File size: 8,918 Bytes
d9a190b
 
 
 
341537a
 
 
 
 
 
 
 
d9a190b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341537a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a190b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341537a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a190b
 
 
 
 
 
 
 
 
 
 
 
 
341537a
 
 
d9a190b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341537a
 
 
d9a190b
341537a
 
 
d9a190b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import streamlit as st
from dotenv import load_dotenv
from langchain_groq import ChatGroq
import os
import importlib.util

# Check if team_info module exists and import it
try:
    import team_info
    has_team_info = True
except ImportError:
    has_team_info = False

# Load environment variables
load_dotenv()

# Initialize the model
model = ChatGroq(model="llama3-8b-8192")

# Function to calculate daily calorie requirements
def calculate_calorie_requirements(age, gender, weight, height, fitness_goal):
    if gender == "Male":
        bmr = 10 * weight + 6.25 * height - 5 * age + 5
    else:
        bmr = 10 * weight + 6.25 * height - 5 * age - 161

    if fitness_goal == "Weight Loss":
        return bmr * 1.2
    elif fitness_goal == "Weight Gain":
        return bmr * 1.5
    else:
        return bmr * 1.375

# Function to generate the plan
def generate_plan_with_prompt(metrics, prompt_template):
    prompt = prompt_template.format(**metrics)
    response = model.invoke(prompt)
    return response

# Function to format the response neatly
def format_plan(response):
    try:
        content = response.content
        sections = content.split("\n\n")
        formatted = ""
        for section in sections:
            formatted += f"**{section.strip()}**\n\n"
        return formatted
    except Exception as e:
        return f"Error formatting plan: {e}"

# Ayurvedic prompt template
ayurveda_prompt_template = """
You are a health expert specialized in both modern medicine and Ayurveda. Generate a personalized weekly diet and exercise plan for {name}, a {age}-year-old {gender} with a BMI of {bmi} ({health_status}).

Fitness Goal: {fitness_goal}.
Daily Calorie Requirement: {daily_calories} kcal.
Dietary Preference: {dietary_preference}.
Food Allergies: {food_allergies}.
Local Cuisine: {local_cuisine}.
Month: {month}.
Ayurvedic Consideration: True

Plan should include:
1. A daily diet plan with meal timings, calorie details, and meal alternatives.
2. Exercise routines based on goals, incorporating cardio, strength, and flexibility.
3. Dynamic plan adjustments based on month and local cuisine preferences.
4. Wearable integration for tracking steps, heart rate, and calorie burn.
5. Progress monitoring for daily calorie burn and weight tracking.
6. **Food Delivery Integration**:
   - Meal suggestions based on diet plans.
   - Integration with food delivery platforms (Uber Eats, DoorDash).
   - Searching menu items that fit calorie and dietary preferences.
   - Multi-restaurant meal aggregation for complete diet fulfillment.
   - Location-based meal recommendations.
   - Customizable meal delivery schedules.
7. **Ayurvedic Elements**:
   - Dosha assessment based on provided metrics.
   - Ayurvedic dietary recommendations aligned with your dosha type.
   - Seasonal herbs and spices for balance.
   - Daily routines (Dinacharya) for optimal health.
   - Natural remedies complementing modern medicine.

Provide a detailed plan for each weekday: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.

Return output as:
Day: {{weekday}}
  - Breakfast: Time, Description, Calories, Ayurvedic Properties
  - Lunch: Time, Description, Calories, Ayurvedic Properties
  - Snacks: Time, Description, Calories, Ayurvedic Properties
  - Dinner: Time, Description, Calories, Ayurvedic Properties
  - Exercise: Description, Duration, Dosha Benefits
  - Wearable Tracking: Steps, Heart Rate, Calories Burned
  - Progress Monitoring: Daily calorie intake vs. burn.
  - Food Delivery: Suggested meal items and delivery options.
  - Ayurvedic Tips: Daily wellness practices based on dosha.
"""

# Regular prompt template
regular_prompt_template = """
You are a health expert. Generate a personalized weekly diet and exercise plan for {name}, a {age}-year-old {gender} with a BMI of {bmi} ({health_status}).

Fitness Goal: {fitness_goal}.
Daily Calorie Requirement: {daily_calories} kcal.
Dietary Preference: {dietary_preference}.
Food Allergies: {food_allergies}.
Local Cuisine: {local_cuisine}.
Month: {month}.

Plan should include:
1. A daily diet plan with meal timings, calorie details, and meal alternatives.
2. Exercise routines based on goals, incorporating cardio, strength, and flexibility.
3. Dynamic plan adjustments based on month and local cuisine preferences.
4. Wearable integration for tracking steps, heart rate, and calorie burn.
5. Progress monitoring for daily calorie burn and weight tracking.
6. **Food Delivery Integration**:
   - Meal suggestions based on diet plans.
   - Integration with food delivery platforms (Uber Eats, DoorDash).
   - Searching menu items that fit calorie and dietary preferences.
   - Multi-restaurant meal aggregation for complete diet fulfillment.
   - Location-based meal recommendations.
   - Customizable meal delivery schedules.

Provide a detailed plan for each weekday: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.

Return output as:
Day: {{weekday}}
  - Breakfast: Time, Description, Calories
  - Lunch: Time, Description, Calories
  - Snacks: Time, Description, Calories
  - Dinner: Time, Description, Calories
  - Exercise: Description, Duration
  - Wearable Tracking: Steps, Heart Rate, Calories Burned
  - Progress Monitoring: Daily calorie intake vs. burn.
  - Food Delivery: Suggested meal items and delivery options.
"""

# Streamlit app
st.title("AI-Based Personalized Weekly Diet and Exercise Planner")

# Add sidebar with team information
with st.sidebar:
    st.header("About this Project")
    st.write("Integration of Ayurveda and modern medical science for comprehensive wellness insights")
    
    if has_team_info:
        st.subheader("Team Members")
        st.markdown("- Aditi Soni [LinkedIn](https://www.linkedin.com/in/aditi-soni-259813285/)")
        st.markdown("- Bhumika Patel [LinkedIn](https://www.linkedin.com/in/bhumika-patel-ml/)")
        st.markdown("- Aditi Lakhera [LinkedIn](https://www.linkedin.com/in/aditi-lakhera-b628802bb/)")
        
        st.subheader("Project Links")
        st.markdown("[GitHub Repository](https://github.com/Abs6187/AI_Health_v2)")
        st.markdown("[Presentation](https://github.com/Abs6187/AI_Health_v2/blob/main/HackGirl_PPT_HackSRIT.pptx)")
        st.markdown("[Hackathon](https://unstop.com/hackathons/hacksrit-shri-ram-group-of-institutions-jabalpur-1471613)")

# Input fields
st.header("Enter Your Details")
name = st.text_input("Name")
age = st.number_input("Age", min_value=1, value=25)
weight = st.number_input("Weight (kg)", min_value=1, value=70)
height = st.number_input("Height (cm)", min_value=1, value=170)
gender = st.selectbox("Gender", options=["Male", "Female", "Other"])
fitness_goal = st.selectbox("Fitness Goal", options=["Weight Loss", "Weight Gain", "Maintenance"])
dietary_preference = st.selectbox("Dietary Preference", options=["Vegetarian", "Vegan", "Keto", "Halal", "None"])
food_allergies = st.text_input("Food Allergies (if any)")
local_cuisine = st.text_input("Preferred Local Cuisine (e.g., Indian, Italian, Chinese)")
month = st.selectbox("Select Month", options=["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"])

# New option for Ayurvedic integration
include_ayurveda = st.checkbox("Include Ayurvedic wellness insights", value=True)

bmi = round(weight / (height / 100) ** 2, 2)
health_status = "Underweight" if bmi < 18.5 else "Normal weight" if bmi <= 24.9 else "Overweight"
daily_calories = calculate_calorie_requirements(age, gender, weight, height, fitness_goal)

st.write(f"Your BMI is {bmi}, which indicates {health_status}.")
st.write(f"Your daily calorie requirement is approximately {int(daily_calories)} kcal.")

# User metrics
metrics = {
    "name": name,
    "age": age,
    "gender": gender,
    "bmi": bmi,
    "health_status": health_status,
    "fitness_goal": fitness_goal,
    "dietary_preference": dietary_preference,
    "food_allergies": food_allergies,
    "daily_calories": int(daily_calories),
    "local_cuisine": local_cuisine,
    "weekdays": ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"],
    "month": month,
}

# Generate and display plan
if st.button("Generate Plan"):
    with st.spinner("Generating your plan..."):
        try:
            # Choose the appropriate prompt based on the Ayurveda option
            selected_prompt = ayurveda_prompt_template if include_ayurveda else regular_prompt_template
            plan = generate_plan_with_prompt(metrics, selected_prompt)
            formatted_plan = format_plan(plan)
            
            plan_title = "Integrated Ayurvedic & Modern Diet and Exercise Plan" if include_ayurveda else "Diet and Exercise Plan"
            st.header(f"Generated {plan_title} for {month}")
            st.markdown(formatted_plan)
        except Exception as e:
            st.error(f"Error generating the plan: {e}")