Update src/streamlit_app.py
Browse files- src/streamlit_app.py +241 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,243 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
import os
|
|
|
|
|
2 |
import streamlit as st
|
3 |
+
import google.generativeai as genai
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from PIL import Image
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
from typing import Dict, Any, List
|
9 |
+
|
10 |
+
# Load environment variables
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# Configure Google Generative AI
|
14 |
+
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))
|
15 |
+
|
16 |
+
# Page Configuration
|
17 |
+
st.set_page_config(
|
18 |
+
page_title="Advanced Fake News Detector π΅οΈββοΈ",
|
19 |
+
page_icon="π¨",
|
20 |
+
layout="wide"
|
21 |
+
)
|
22 |
+
|
23 |
+
# Custom CSS
|
24 |
+
st.markdown("""
|
25 |
+
<style>
|
26 |
+
.main-container {
|
27 |
+
background-color: #f0f2f6;
|
28 |
+
padding: 2rem;
|
29 |
+
border-radius: 15px;
|
30 |
+
}
|
31 |
+
.analysis-box {
|
32 |
+
background-color: white;
|
33 |
+
border-radius: 10px;
|
34 |
+
padding: 1.5rem;
|
35 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
36 |
+
}
|
37 |
+
.stButton>button {
|
38 |
+
background-color: #4CAF50;
|
39 |
+
color: white;
|
40 |
+
font-weight: bold;
|
41 |
+
border: none;
|
42 |
+
padding: 10px 20px;
|
43 |
+
border-radius: 5px;
|
44 |
+
transition: all 0.3s ease;
|
45 |
+
}
|
46 |
+
.stButton>button:hover {
|
47 |
+
background-color: #45a049;
|
48 |
+
transform: scale(1.05);
|
49 |
+
}
|
50 |
+
</style>
|
51 |
+
""", unsafe_allow_html=True)
|
52 |
+
|
53 |
+
class FakeNewsDetector:
|
54 |
+
def __init__(self):
|
55 |
+
"""Initialize the Fake News Detection system"""
|
56 |
+
self.model = genai.GenerativeModel('gemini-2.0-flash')
|
57 |
+
|
58 |
+
def analyze_article(self, article_text: str) -> Dict[str, Any]:
|
59 |
+
"""
|
60 |
+
Analyze the article using Gemini AI
|
61 |
+
|
62 |
+
Args:
|
63 |
+
article_text (str): Full text of the article
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
Dict containing analysis results
|
67 |
+
"""
|
68 |
+
prompt = f"""Comprehensive Fake News Analysis:
|
69 |
+
|
70 |
+
Article Text:
|
71 |
+
{article_text}
|
72 |
+
|
73 |
+
Provide a detailed analysis with:
|
74 |
+
1. Fake News Probability (0-100%)
|
75 |
+
2. Credibility Score (0-10)
|
76 |
+
3. Key Red Flags
|
77 |
+
4. Verification Recommendations
|
78 |
+
5. Potential Bias Indicators
|
79 |
+
6. Source Reliability Assessment
|
80 |
+
|
81 |
+
Format response as a structured JSON."""
|
82 |
+
|
83 |
+
try:
|
84 |
+
response = self.model.generate_content(prompt)
|
85 |
+
return self._parse_analysis(response.text)
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Analysis Error: {e}")
|
88 |
+
return {}
|
89 |
+
|
90 |
+
def _parse_analysis(self, analysis_text: str) -> Dict[str, Any]:
|
91 |
+
"""
|
92 |
+
Parse the AI-generated analysis into a structured format
|
93 |
+
|
94 |
+
Args:
|
95 |
+
analysis_text (str): Raw analysis text
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
Parsed analysis dictionary
|
99 |
+
"""
|
100 |
+
try:
|
101 |
+
# Basic parsing logic (can be enhanced)
|
102 |
+
return {
|
103 |
+
'fake_news_probability': self._extract_percentage(analysis_text),
|
104 |
+
'credibility_score': self._extract_score(analysis_text),
|
105 |
+
'red_flags': self._extract_red_flags(analysis_text),
|
106 |
+
'verification_steps': self._extract_verification_steps(analysis_text),
|
107 |
+
'bias_indicators': self._extract_bias_indicators(analysis_text),
|
108 |
+
'source_reliability': self._extract_source_reliability(analysis_text)
|
109 |
+
}
|
110 |
+
except Exception as e:
|
111 |
+
st.warning(f"Parsing Error: {e}")
|
112 |
+
return {}
|
113 |
+
|
114 |
+
def _extract_percentage(self, text: str) -> float:
|
115 |
+
"""Extract fake news probability percentage"""
|
116 |
+
import re
|
117 |
+
match = re.search(r'(\d+(?:\.\d+)?)\s*%', text)
|
118 |
+
return float(match.group(1)) if match else 50.0
|
119 |
+
|
120 |
+
def _extract_score(self, text: str) -> float:
|
121 |
+
"""Extract credibility score"""
|
122 |
+
import re
|
123 |
+
match = re.search(r'Credibility Score[:\s]*(\d+(?:\.\d+)?)', text)
|
124 |
+
return float(match.group(1)) if match else 5.0
|
125 |
+
|
126 |
+
def _extract_red_flags(self, text: str) -> List[str]:
|
127 |
+
"""Extract red flags from the analysis"""
|
128 |
+
import re
|
129 |
+
flags = re.findall(r'Red Flags?[:\s]*([^\n]+)', text, re.IGNORECASE)
|
130 |
+
return flags[:3] if flags else ["No specific red flags identified"]
|
131 |
+
|
132 |
+
def _extract_verification_steps(self, text: str) -> List[str]:
|
133 |
+
"""Extract verification recommendations"""
|
134 |
+
import re
|
135 |
+
steps = re.findall(r'Verification[:\s]*([^\n]+)', text, re.IGNORECASE)
|
136 |
+
return steps[:3] if steps else ["Conduct independent research"]
|
137 |
+
|
138 |
+
def _extract_bias_indicators(self, text: str) -> List[str]:
|
139 |
+
"""Extract potential bias indicators"""
|
140 |
+
import re
|
141 |
+
biases = re.findall(r'Bias[:\s]*([^\n]+)', text, re.IGNORECASE)
|
142 |
+
return biases[:3] if biases else ["No clear bias detected"]
|
143 |
+
|
144 |
+
def _extract_source_reliability(self, text: str) -> str:
|
145 |
+
"""Extract source reliability assessment"""
|
146 |
+
import re
|
147 |
+
match = re.search(r'Source Reliability[:\s]*([^\n]+)', text, re.IGNORECASE)
|
148 |
+
return match.group(1) if match else "Reliability not conclusively determined"
|
149 |
+
|
150 |
+
def main():
|
151 |
+
st.title("π¨ Advanced Fake News Detector")
|
152 |
+
st.markdown("Powered by Google's Gemini 2.0 Flash AI")
|
153 |
+
|
154 |
+
# Sidebar Configuration
|
155 |
+
st.sidebar.header("π οΈ Detection Settings")
|
156 |
+
confidence_threshold = st.sidebar.slider(
|
157 |
+
"Confidence Threshold",
|
158 |
+
min_value=0.0,
|
159 |
+
max_value=1.0,
|
160 |
+
value=0.7,
|
161 |
+
step=0.05
|
162 |
+
)
|
163 |
+
|
164 |
+
# Article Input
|
165 |
+
st.header("π Article Analysis")
|
166 |
+
article_text = st.text_area(
|
167 |
+
"Paste the full article text",
|
168 |
+
height=300,
|
169 |
+
help="Copy and paste the complete article for comprehensive analysis"
|
170 |
+
)
|
171 |
+
|
172 |
+
# Image Upload (Optional)
|
173 |
+
st.header("πΌοΈ Article Evidence")
|
174 |
+
uploaded_image = st.file_uploader(
|
175 |
+
"Upload supporting/source image",
|
176 |
+
type=['png', 'jpg', 'jpeg'],
|
177 |
+
help="Optional: Upload an image related to the article for additional context"
|
178 |
+
)
|
179 |
+
|
180 |
+
# Analyze Button
|
181 |
+
if st.button("π Detect Fake News", key="analyze_btn"):
|
182 |
+
if not article_text:
|
183 |
+
st.error("Please provide an article to analyze.")
|
184 |
+
return
|
185 |
+
|
186 |
+
# Initialize Detector
|
187 |
+
detector = FakeNewsDetector()
|
188 |
+
|
189 |
+
# Perform Analysis
|
190 |
+
with st.spinner('Analyzing article...'):
|
191 |
+
analysis = detector.analyze_article(article_text)
|
192 |
+
|
193 |
+
# Display Results
|
194 |
+
if analysis:
|
195 |
+
st.subheader("π¬ Detailed Analysis")
|
196 |
+
|
197 |
+
# Credibility Visualization
|
198 |
+
col1, col2, col3 = st.columns(3)
|
199 |
+
|
200 |
+
with col1:
|
201 |
+
st.metric(
|
202 |
+
"Fake News Probability",
|
203 |
+
f"{analysis.get('fake_news_probability', 50):.2f}%"
|
204 |
+
)
|
205 |
+
|
206 |
+
with col2:
|
207 |
+
st.metric(
|
208 |
+
"Credibility Score",
|
209 |
+
f"{analysis.get('credibility_score', 5):.2f}/10"
|
210 |
+
)
|
211 |
+
|
212 |
+
with col3:
|
213 |
+
st.metric(
|
214 |
+
"Risk Level",
|
215 |
+
"High" if analysis.get('fake_news_probability', 50) > 50 else "Low"
|
216 |
+
)
|
217 |
+
|
218 |
+
# Detailed Insights
|
219 |
+
st.subheader("π© Red Flags")
|
220 |
+
for flag in analysis.get('red_flags', []):
|
221 |
+
st.warning(flag)
|
222 |
+
|
223 |
+
st.subheader("π΅οΈ Verification Steps")
|
224 |
+
for step in analysis.get('verification_steps', []):
|
225 |
+
st.info(step)
|
226 |
+
|
227 |
+
# Image Analysis (if uploaded)
|
228 |
+
if uploaded_image:
|
229 |
+
image = Image.open(uploaded_image)
|
230 |
+
st.subheader("πΈ Uploaded Image")
|
231 |
+
st.image(image, caption="Article Supporting Image", use_column_width=True)
|
232 |
+
|
233 |
+
# Final Recommendation
|
234 |
+
st.markdown("---")
|
235 |
+
st.markdown("""
|
236 |
+
### π€ How to Interpret Results
|
237 |
+
- **Low Probability**: Article seems credible
|
238 |
+
- **High Probability**: Exercise caution, verify sources
|
239 |
+
- **Always cross-reference with multiple sources**
|
240 |
+
""")
|
241 |
|
242 |
+
if __name__ == "__main__":
|
243 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|