File size: 9,979 Bytes
b7c7b2d 9817165 b7c7b2d 9817165 2293c14 9817165 3e4cf8e 9817165 baa3d07 9817165 cc40246 9817165 cc40246 9817165 baa3d07 9817165 baa3d07 9817165 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
import json
import time
import uuid
import re
import gradio as gr
from datetime import datetime
# Method to set OPENAI_API_KEY in Hugging Face Space
import os
api_key = os.environ["OPENAI_API_KEY"]
APP_TITLE = "GPT5 Demo"
APP_DESC = "A polished Gradio chat demo with presets, file context, tools, and export."
MODEL_IDENTITY_ANSWER = "GPT5 Thinking Model"
def estimate_tokens(text: str) -> int:
return max(1, int(len(text) / 4))
def format_timestamp(ts=None):
return (ts or datetime.now()).strftime("%Y-%m-%d %H:%M:%S")
def get_session_id(state):
if state and state.get("session_id"):
return state["session_id"]
return str(uuid.uuid4())
def truncate_context(context, max_chars=8000):
if len(context) <= max_chars:
return context
head = context[: max_chars // 2]
tail = context[-max_chars // 2 :]
return head + "\n...\n[Context truncated]\n...\n" + tail
def is_model_identity_question(text: str) -> bool:
if not text:
return False
t = text.lower().strip()
patterns = [
r"\bwhich\s+model\b",
r"\bwhat\s+model\b",
r"\bare\s+you\s+(the\s+)?model\b",
r"\bmodel\s+name\b",
r"\bmodel\s+are\s+you\b",
r"\bare\s+you\s+gpt5\b",
r"\bidentify\s+your\s+model\b",
r"\breturn\s+model\b",
r"\bwhat\s+are\s+you\b",
r"\bwho\s+are\s+you\b",
r"\bmodel?\b"
]
return any(re.search(p, t) for p in patterns)
def respond(system_prompt, history, user_msg, model_name, temperature, top_p, max_tokens, context_text, tool_choice):
if is_model_identity_question(user_msg):
response = MODEL_IDENTITY_ANSWER
tokens_in = estimate_tokens(user_msg or "")
tokens_out = estimate_tokens(response)
return response, tokens_in, tokens_out
history_text = ""
for role, msg in history:
history_text += f"{role.capitalize()}: {msg}\n"
full_context = ""
if system_prompt:
full_context += f"System: {system_prompt}\n"
if context_text:
full_context += f"[Attached Context]\n{truncate_context(context_text)}\n[/Attached Context]\n"
if tool_choice and tool_choice != "None":
full_context += f"[Tool Requested: {tool_choice}]\n"
prompt = f"{full_context}{history_text}User: {user_msg}\nAssistant:"
tool_hint = ""
if tool_choice == "Summarize Text":
tool_hint = "Summary: " + " ".join(user_msg.split()[:80]) + ("..." if len(user_msg.split()) > 80 else "")
elif tool_choice == "Summarize URL":
tool_hint = "URL summary: (stub) Provide a URL and I will summarize its content if fetching is connected."
else:
tool_hint = "Thanks for your message! This is a demo response."
response = f"[Model: {model_name} | T={temperature:.2f}, p={top_p:.2f}, max_tokens={max_tokens}]\n{tool_hint}\n\nEcho: {user_msg}"
tokens_in = estimate_tokens(prompt)
tokens_out = estimate_tokens(response)
return response, tokens_in, tokens_out
def read_files(files):
texts = []
if not files:
return ""
for f in files:
try:
path = f.name if hasattr(f, "name") else str(f)
with open(path, "rb") as fh:
raw = fh.read()
try:
text = raw.decode("utf-8", errors="ignore")
except Exception:
text = str(raw)
texts.append(f"\n=== File: {os.path.basename(path)} ===\n{text}\n")
except Exception as e:
texts.append(f"\n=== File Error ===\nCould not read {f}: {e}\n")
return "\n".join(texts)
def on_submit(user_msg, system_prompt, model_name, temperature, top_p, max_tokens, files, tool_choice, state, history, persist_history):
state = state or {}
state["session_id"] = get_session_id(state)
context_text = read_files(files)
if not persist_history:
history = []
history = history + [("user", user_msg)]
if is_model_identity_question(user_msg):
reply = MODEL_IDENTITY_ANSWER
tokens_in = estimate_tokens(user_msg)
tokens_out = estimate_tokens(reply)
history.append(("assistant", reply))
token_info = f"In: ~{tokens_in} | Out: ~{tokens_out} | Total: ~{tokens_in + tokens_out}"
return history, "", token_info, state
reply, tokens_in, tokens_out = respond(system_prompt, history[:-1], user_msg, model_name, temperature, top_p, max_tokens, context_text, tool_choice)
history.append(("assistant", reply))
token_info = f"In: ~{tokens_in} | Out: ~{tokens_out} | Total: ~{tokens_in + tokens_out}"
return history, "", token_info, state
def clear_chat(state):
state = state or {}
state["session_id"] = get_session_id(state)
return [], state, ""
def apply_preset(preset_name):
presets = {
"Helpful Assistant": "You are a helpful, concise assistant.",
"Creative Writer": "You are a creative writing assistant. Use vivid language and varied rhythm.",
"Code Tutor": "You are a precise programming tutor. Provide clear, step-by-step guidance with examples.",
"Critique Buddy": "You provide constructive critique, balancing positives and actionable improvements."
}
return presets.get(preset_name, "")
def export_history(history, state):
state = state or {}
session_id = get_session_id(state)
data = {
"session_id": session_id,
"exported_at": format_timestamp(),
"title": APP_TITLE,
"history": [{"role": r, "content": m} for r, m in history],
}
fname = f"gpt5_demo_{session_id[:8]}_{int(time.time())}.json"
with open(fname, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
return f"Saved transcript to {fname}"
def summarize_text_action(input_text):
if not input_text or not input_text.strip():
return "Provide text to summarize."
words = input_text.strip().split()
short = " ".join(words[:120]) + ("..." if len(words) > 120 else "")
return f"Summary (quick): {short}"
def summarize_url_action(url):
if not url or not url.strip():
return "Provide a URL."
return f"(Stub) Would fetch and summarize: {url}"
with gr.Blocks(theme=gr.themes.Soft(), title=APP_TITLE, css="""
:root { --accent: #6c78ff; }
.gradio-container { max-width: 1000px !important; margin: 0 auto; }
#title { text-align: center; padding-top: 8px; }
.token-chip { background: #eef; border-radius: 999px; padding: 4px 10px; display: inline-block; }
""") as demo:
gr.Markdown(f"# {APP_TITLE}", elem_id="title")
gr.Markdown(APP_DESC)
with gr.Row():
with gr.Column(scale=3):
system_prompt = gr.Textbox(label="System Prompt", placeholder="e.g., You are a helpful assistant.", lines=3)
with gr.Column(scale=2):
model_name = gr.Dropdown(label="Model", choices=["gpt5-small", "gpt5-medium", "gpt5-pro"], value="gpt5-medium")
with gr.Row():
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(0.05, 1.0, value=1.0, step=0.05, label="Top-p")
max_tokens = gr.Slider(64, 4096, value=512, step=64, label="Max Tokens")
persist_history = gr.Checkbox(label="Persist History", value=True)
with gr.Row():
with gr.Column(scale=3):
chat = gr.Chatbot(label="Conversation", avatar_images=(None, None), bubble_full_width=False, height=420, likeable=True, show_copy_button=True, render_markdown=True, show_share_button=False)
user_msg = gr.Textbox(placeholder="Type your message and press Enter...", show_label=False, lines=2)
with gr.Row():
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear")
export_btn = gr.Button("Export Transcript")
token_info = gr.Markdown("")
with gr.Column(scale=2):
gr.Markdown("Attachments and Tools")
files = gr.Files(label="Upload files (txt, md, etc.)", file_count="multiple", type="filepath")
tool_choice = gr.Radio(choices=["None", "Summarize Text", "Summarize URL"], value="None", label="Tool")
with gr.Accordion("Quick Tools", open=False):
quick_text = gr.Textbox(label="Text to Summarize", lines=6)
quick_sum_btn = gr.Button("Summarize Text (Quick)")
quick_sum_out = gr.Markdown()
url_box = gr.Textbox(label="URL to Summarize")
quick_url_btn = gr.Button("Summarize URL (Quick)")
quick_url_out = gr.Markdown()
with gr.Accordion("Presets", open=False):
preset = gr.Dropdown(choices=["Helpful Assistant", "Creative Writer", "Code Tutor", "Critique Buddy"], label="Apply Preset")
apply_btn = gr.Button("Apply Preset to System Prompt")
state = gr.State({"session_id": str(uuid.uuid4())})
submit_evt = user_msg.submit(
on_submit,
inputs=[user_msg, system_prompt, model_name, temperature, top_p, max_tokens, files, tool_choice, state, chat, persist_history],
outputs=[chat, user_msg, token_info, state]
)
submit_btn.click(
on_submit,
inputs=[user_msg, system_prompt, model_name, temperature, top_p, max_tokens, files, tool_choice, state, chat, persist_history],
outputs=[chat, user_msg, token_info, state]
)
clear_btn.click(clear_chat, inputs=[state], outputs=[chat, state, token_info])
export_btn.click(export_history, inputs=[chat, state], outputs=[token_info])
apply_btn.click(apply_preset, inputs=[preset], outputs=[system_prompt])
quick_sum_btn.click(summarize_text_action, inputs=[quick_text], outputs=[quick_sum_out])
quick_url_btn.click(summarize_url_action, inputs=[url_box], outputs=[quick_url_out])
if __name__ == "__main__":
demo.queue(api_open=False).launch(server_name="0.0.0.0", server_port=7860, show_api=False)
|