AbstractPhil commited on
Commit
73c138b
·
1 Parent(s): 4e7580d

super condensed test

Browse files
Files changed (1) hide show
  1. app.py +138 -745
app.py CHANGED
@@ -1,282 +1,75 @@
1
  """
2
- Mirel Harmony Inference HF Space (Gradio)
3
- ZeroGPU-ready, Harmony formatting, optional Rose-guided decoding
4
- Chain-of-thought model with proper channel extraction using openai_harmony
5
  Single file: app.py
6
  """
7
  from __future__ import annotations
8
- import os, gc, json, threading, torch
9
- from dataclasses import dataclass
10
- from typing import List, Dict, Optional, Any
11
- from datetime import datetime
12
  import gradio as gr
13
- import spaces # required for ZeroGPU
14
- from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList
15
-
16
- # Import Harmony components
17
- try:
18
- from openai_harmony import (
19
- Author,
20
- Conversation,
21
- HarmonyEncodingName,
22
- Message,
23
- Role,
24
- SystemContent,
25
- DeveloperContent,
26
- load_harmony_encoding,
27
- ReasoningEffort
28
- )
29
- HARMONY_AVAILABLE = True
30
- except ImportError:
31
- print("[WARNING] openai_harmony not installed. Install with: pip install openai-harmony")
32
- HARMONY_AVAILABLE = False
33
 
34
  # -----------------------
35
- # Config & runtime modes
36
  # -----------------------
37
- DTYPE_MAP = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}
38
-
39
- MODEL_ID = os.getenv("MODEL_ID", "openai/gpt-oss-20b")
40
- ADAPTER_ID = os.getenv("ADAPTER_ID") or None
41
- ADAPTER_SUBFOLDER = os.getenv("ADAPTER_SUBFOLDER") or None
42
- ATTN_IMPL = os.getenv("ATTN_IMPL", "eager")
43
- DTYPE = DTYPE_MAP.get(os.getenv("DTYPE", "bf16").lower(), torch.bfloat16)
44
- SYSTEM_DEF = os.getenv("SYSTEM_PROMPT", "You are Mirel, a memory-stable symbolic assistant.")
45
- MAX_DEF = int(os.getenv("MAX_NEW_TOKENS", "256"))
46
- ZEROGPU = os.getenv("ZEROGPU", os.getenv("ZERO_GPU", "0")) == "1"
47
- LOAD_4BIT = os.getenv("LOAD_4BIT", "0") == "1"
48
-
49
- # Harmony channels for CoT
50
- REQUIRED_CHANNELS = ["analysis", "final"]
51
-
52
- # HF Auth - properly handle multiple token env var names
53
  HF_TOKEN: Optional[str] = (
54
- os.getenv("HF_TOKEN")
55
- or os.getenv("HUGGING_FACE_HUB_TOKEN")
56
  or os.getenv("HUGGINGFACEHUB_API_TOKEN")
57
  or os.getenv("HF_ACCESS_TOKEN")
58
  )
59
 
60
- def _hf_login() -> None:
61
- """Login to HF Hub using common env secret names."""
62
- if HF_TOKEN:
63
- try:
64
- from huggingface_hub import login, whoami
65
- login(token=HF_TOKEN, add_to_git_credential=True)
66
- try:
67
- who = whoami(token=HF_TOKEN)
68
- print(f"[HF Auth] Logged in as: {who.get('name') or who.get('fullname') or who.get('id', 'unknown')}")
69
- except Exception:
70
- print("[HF Auth] Login successful but couldn't get user info")
71
- except Exception as e:
72
- print(f"[HF Auth] Login failed: {e}")
73
- else:
74
- print("[HF Auth] No token found in environment variables")
75
-
76
- # Login is handled by Space OAuth/session; avoid explicit CLI login here to prevent OAuth var errors
77
- # _hf_login()
78
-
79
  os.environ["TOKENIZERS_PARALLELISM"] = "false"
80
 
81
- # Load Harmony encoding if available
82
- if HARMONY_AVAILABLE:
83
- harmony_encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
84
- else:
85
- harmony_encoding = None
86
-
87
- # Stop tokens per Harmony spec: <|return|> (200002), <|call|> (200012)
88
- HARMONY_STOP_IDS = harmony_encoding.stop_tokens_for_assistant_actions() if HARMONY_AVAILABLE else []
89
-
90
- # Tokenizer is lightweight; load once
91
- try:
92
- tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
93
- print(f"[Model] Successfully loaded tokenizer from {MODEL_ID}")
94
- except Exception as e:
95
- print(f"[Model] Failed to load tokenizer: {e}")
96
- raise
97
 
98
  # -----------------------
99
- # Model loading
100
  # -----------------------
101
- try:
102
- from peft import PeftModel
103
- _HAS_PEFT = True
104
- except Exception:
105
- _HAS_PEFT = False
106
-
107
-
108
- def _build_model_kwargs(device_map: Optional[str]) -> Dict[str, Any]:
109
- kw: Dict[str, Any] = dict(
110
- torch_dtype=DTYPE,
111
- device_map=device_map,
112
- attn_implementation=ATTN_IMPL if device_map != "cpu" else "eager",
113
- trust_remote_code=True,
114
- low_cpu_mem_usage=True,
115
- token=HF_TOKEN,
116
- )
117
- if LOAD_4BIT and device_map != "cpu":
118
  try:
119
- import bitsandbytes as _bnb
120
- kw.update(load_in_4bit=True)
121
- if kw["device_map"] is None:
122
- kw["device_map"] = "auto"
 
 
 
123
  except Exception:
124
  pass
125
- return kw
126
-
127
-
128
- def _load_model_on(device_map: Optional[str]) -> AutoModelForCausalLM:
129
- print(f"[Model] Loading base model from {MODEL_ID}...")
130
- model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **_build_model_kwargs(device_map))
131
-
132
- if ADAPTER_ID:
133
- if not _HAS_PEFT:
134
- raise RuntimeError("peft is required when ADAPTER_ID is set.")
135
- print(f"[Model] Loading adapter from {ADAPTER_ID}...")
136
- peft_kwargs: Dict[str, Any] = {"token": HF_TOKEN}
137
- if ADAPTER_SUBFOLDER:
138
- peft_kwargs["subfolder"] = ADAPTER_SUBFOLDER
139
- model = PeftModel.from_pretrained(model, ADAPTER_ID, is_trainable=False, **peft_kwargs)
140
-
141
- model.eval()
142
- # Ensure a valid pad_token_id is set; some OSS checkpoints reuse eos as pad
143
- if getattr(model.config, "pad_token_id", None) is None:
144
- model.config.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id
145
- model.config.use_cache = True
146
- print("[Model] Model loaded successfully")
147
- return model
148
-
149
- # -----------------------
150
- # Harmony formatting
151
- # -----------------------
152
-
153
- def create_harmony_prompt(messages: List[Dict[str, str]], reasoning_effort: str = "high") -> Any:
154
- """Build a Harmony-formatted prompt. If Harmony is available, return **token IDs**
155
- rendered by `openai_harmony` (authoritative). Otherwise fall back to the
156
- tokenizer's chat template and return a string.
157
- """
158
- if HARMONY_AVAILABLE and harmony_encoding is not None:
159
- effort_map = {"low": ReasoningEffort.LOW, "medium": ReasoningEffort.MEDIUM, "high": ReasoningEffort.HIGH}
160
- effort = effort_map.get(str(reasoning_effort).lower(), ReasoningEffort.HIGH)
161
-
162
- system_content = (
163
- SystemContent.new()
164
- .with_model_identity("You are ChatGPT, a large language model trained by OpenAI.")
165
- .with_reasoning_effort(effort)
166
- .with_conversation_start_date(datetime.now().strftime("%Y-%m-%d"))
167
- .with_knowledge_cutoff("2024-06")
168
- .with_required_channels(REQUIRED_CHANNELS)
169
- )
170
-
171
- # Use first system message as developer instructions if present, else SYSTEM_DEF
172
- sys_text = SYSTEM_DEF
173
- rest: List[Dict[str, str]] = messages or []
174
- if rest and rest[0].get("role") == "system":
175
- sys_text = rest[0].get("content") or SYSTEM_DEF
176
- rest = rest[1:]
177
-
178
- harmony_messages = [Message.from_role_and_content(Role.SYSTEM, system_content)]
179
- dev = DeveloperContent.new().with_instructions(sys_text)
180
- harmony_messages.append(Message.from_role_and_content(Role.DEVELOPER, dev))
181
-
182
- for m in rest:
183
- role = m.get("role"); content = m.get("content", "")
184
- if role == "user":
185
- harmony_messages.append(Message.from_role_and_content(Role.USER, content))
186
- elif role == "assistant":
187
- harmony_messages.append(
188
- Message.from_role_and_content(Role.ASSISTANT, content).with_channel("final")
189
- )
190
-
191
- convo = Conversation.from_messages(harmony_messages)
192
- rendered = harmony_encoding.render_conversation_for_completion(convo, Role.ASSISTANT)
193
- # Ensure assistant header includes a final channel + message start to avoid 'assistantassistant...' loops
194
- try:
195
- _tail = tokenizer.decode(list(rendered)[-64:], skip_special_tokens=False)
196
- if '<|channel|>final<|message|>' not in _tail:
197
- rendered = list(rendered) + tokenizer.encode('<|channel|>final<|message|>', add_special_tokens=False)
198
- except Exception:
199
- rendered = list(rendered)
200
- return rendered
201
-
202
- # Fallback: tokenizer chat template -> string prompt
203
- if not messages or messages[0].get("role") != "system":
204
- messages = [{"role": "system", "content": SYSTEM_DEF}] + (messages or [])
205
- return tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
206
-
207
- def parse_harmony_response(tokens: List[int]) -> Dict[str, str]:
208
- """Parse response tokens using Harmony format to extract channels."""
209
- if not HARMONY_AVAILABLE:
210
- # Fallback: just decode and extract final channel manually
211
- text = tokenizer.decode(tokens, skip_special_tokens=False)
212
- return {"final": extract_final_channel_fallback(text), "raw": text}
213
-
214
- # Parse messages from completion tokens
215
- parsed_messages = harmony_encoding.parse_messages_from_completion_tokens(tokens, Role.ASSISTANT)
216
-
217
- # Extract content by channel
218
- channels = {}
219
- for msg in parsed_messages:
220
- channel = msg.channel if hasattr(msg, 'channel') else "final"
221
- if channel not in channels:
222
- channels[channel] = ""
223
- channels[channel] += "".join([getattr(part, "text", str(part)) for part in (msg.content if isinstance(msg.content, list) else [msg.content])])
224
-
225
- # Ensure we have a final channel
226
- if "final" not in channels:
227
- channels["final"] = " ".join(channels.values())
228
-
229
- return channels
230
-
231
- def extract_final_channel_fallback(text: str) -> str:
232
- """Robustly extract the <final> channel from decoded Harmony text.
233
- Works even if parsing fails or the model emits extra headers.
234
- """
235
- try:
236
- chunks: Dict[str, str] = {}
237
- pieces = text.split("<|channel|>")
238
- for seg in pieces[1:]:
239
- name_end = seg.find("<|message|>")
240
- if name_end <= 0:
241
- continue
242
- ch = seg[:name_end].strip()
243
- body_start = name_end + len("<|message|>")
244
- # end at next channel/end/return marker
245
- next_pos = len(seg)
246
- for delim in ("<|channel|>", "<|end|>", "<|return|>"):
247
- p = seg.find(delim, body_start)
248
- if p != -1:
249
- next_pos = min(next_pos, p)
250
- body = seg[body_start:next_pos]
251
- chunks[ch] = chunks.get(ch, "") + body
252
- final_txt = (chunks.get("final", "").strip())
253
- if final_txt:
254
- return final_txt
255
- # Fallback: everything after last final marker up to a terminator
256
- if "<|channel|>final<|message|>" in text:
257
- tail = text.split("<|channel|>final<|message|>")[-1]
258
- for delim in ("<|return|>", "<|end|>", "<|channel|>"):
259
- idx = tail.find(delim)
260
- if idx != -1:
261
- tail = tail[:idx]
262
- break
263
- return tail.strip()
264
- except Exception:
265
- pass
266
- return text.strip()
267
 
268
- # -----------------------
269
- # Rose guidance
270
- # -----------------------
 
 
 
 
271
 
272
- def build_bias_from_tokens(tokenizer, mapping: Dict[str, float]) -> torch.Tensor:
273
- """Create vocab bias from {token: weight}."""
274
- vocab_size = len(tokenizer)
275
- bias = torch.zeros(vocab_size, dtype=torch.float32)
276
- for tok, w in mapping.items():
277
- if tok is None:
278
- continue
279
- tid = tokenizer.convert_tokens_to_ids(tok)
280
  if isinstance(tid, list):
281
  for t in tid:
282
  if isinstance(t, int) and t >= 0:
@@ -285,184 +78,71 @@ def build_bias_from_tokens(tokenizer, mapping: Dict[str, float]) -> torch.Tensor
285
  bias[tid] += float(w)
286
  return bias
287
 
288
- class RoseGuidedLogits(torch.nn.Module):
289
- def __init__(self, bias_vec: torch.Tensor, alpha: float = 1.0):
290
- super().__init__()
291
- self.bias_vec = bias_vec
292
- self.alpha = float(alpha)
293
-
294
- def forward(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
295
- return scores + self.alpha * self.bias_vec.to(scores.device)
296
-
297
- class StopOnTokens(StoppingCriteria):
298
- def __init__(self, stop_ids: List[int]):
299
- self.stop_ids = set(int(s) for s in (stop_ids or []))
300
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
301
- return int(input_ids[0, -1]) in self.stop_ids
302
-
303
- @spaces.GPU(duration=120)
304
- def zerogpu_generate(full_prompt,
305
- gen_kwargs: Dict[str, Any],
306
- rose_map: Optional[Dict[str, float]],
307
- rose_alpha: float,
308
- rose_score: Optional[float],
309
- seed: Optional[int]) -> Dict[str, str]:
310
- """Run inference on GPU and return parsed channels."""
311
- try:
312
- if seed is not None:
313
- torch.manual_seed(int(seed))
314
-
315
- # Load model
316
- model = _load_model_on("auto")
317
-
318
- # Setup logits processor for Rose guidance
319
- logits_processor = None
320
- if rose_map:
321
- bias = build_bias_from_tokens(tokenizer, rose_map).to(next(model.parameters()).device)
322
- eff_alpha = float(rose_alpha) * (float(rose_score) if rose_score is not None else 1.0)
323
- logits_processor = [RoseGuidedLogits(bias, eff_alpha)]
324
-
325
- # Tokenize / prepare inputs
326
- device = next(model.parameters()).device
327
- if HARMONY_AVAILABLE and not isinstance(full_prompt, str):
328
- # Accept list/tuple or any iterable of ints from openai_harmony
329
- try:
330
- token_list = list(full_prompt)
331
- except TypeError:
332
- token_list = list(getattr(full_prompt, "ids", getattr(full_prompt, "token_ids", [])))
333
- if not token_list:
334
- raise ValueError("Harmony prompt produced no tokens")
335
- input_ids = torch.tensor([token_list], dtype=torch.long, device=device)
336
- attention_mask = torch.ones_like(input_ids, dtype=torch.long, device=device)
337
- inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
338
- prompt_len = input_ids.shape[1]
339
- else:
340
- enc = tokenizer(full_prompt, return_tensors="pt")
341
- inputs = {k: v.to(device) for k, v in enc.items()}
342
- prompt_len = int(inputs["input_ids"].shape[1])
343
- if "attention_mask" not in inputs:
344
- inputs["attention_mask"] = torch.ones_like(inputs["input_ids"], dtype=torch.long, device=device)
345
-
346
- # Prepare stopping
347
- sc = None
348
- if HARMONY_AVAILABLE and HARMONY_STOP_IDS:
349
- sc = StoppingCriteriaList([StopOnTokens(HARMONY_STOP_IDS)])
350
-
351
- # Generate
352
- # Disallow degenerate header loops
353
- bad_words_ids = None
354
- try:
355
- _B = []
356
- for s in ("assistantassistant", "assistant", "<|assistant|>"):
357
- ids = tokenizer.encode(s, add_special_tokens=False)
358
- if ids:
359
- _B.append(ids)
360
- bad_words_ids = _B if _B else None
361
- except Exception:
362
- pass
363
-
364
- out_ids = model.generate(
365
- **inputs,
366
- do_sample=bool(gen_kwargs.get("do_sample", True)),
367
- temperature=float(gen_kwargs.get("temperature", 0.6)),
368
- top_p=(float(gen_kwargs.get("top_p")) if gen_kwargs.get("top_p") is not None else None),
369
- top_k=(int(gen_kwargs.get("top_k")) if gen_kwargs.get("top_k") else None),
370
- max_new_tokens=int(gen_kwargs.get("max_new_tokens", MAX_DEF)),
371
- pad_token_id=model.config.pad_token_id,
372
- eos_token_id=tokenizer.eos_token_id,
373
- repetition_penalty=float(gen_kwargs.get("repetition_penalty", 1.1)),
374
- no_repeat_ngram_size=int(gen_kwargs.get("no_repeat_ngram_size", 6)),
375
- logits_processor=logits_processor,
376
- stopping_criteria=sc,
377
- )
378
-
379
- # Extract generated tokens only
380
- out_list = out_ids[0].tolist()
381
- gen_ids = out_list[prompt_len:]
382
- # Truncate at first Harmony stop token if present
383
- if HARMONY_AVAILABLE:
384
- for sid in HARMONY_STOP_IDS:
385
- if sid in gen_ids:
386
- gen_ids = gen_ids[:gen_ids.index(sid)]
387
- break
388
-
389
- # Parse response with Harmony
390
- if HARMONY_AVAILABLE:
391
- try:
392
- channels = parse_harmony_response(gen_ids)
393
- except Exception:
394
- # Fallback to text parsing if Harmony parser fails
395
- decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
396
- channels = {
397
- "final": extract_final_channel_fallback(decoded),
398
- "raw": decoded
399
- }
400
- else:
401
- # Fallback decode + channels
402
- decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
403
- channels = {
404
- "final": extract_final_channel_fallback(decoded),
405
- "raw": decoded
406
- }
407
-
408
- return channels
409
-
410
- except Exception as e:
411
- return {"final": f"[Error] {type(e).__name__}: {str(e)}", "raw": str(e)}
412
- finally:
413
- # Cleanup
414
- try:
415
- del model
416
- except:
417
- pass
418
- gc.collect()
419
- if torch.cuda.is_available():
420
- torch.cuda.empty_cache()
421
-
422
  # -----------------------
423
- # Simple (non-Harmony) GPU path matches your minimal example
424
  # -----------------------
425
  @spaces.GPU(duration=120)
426
- def zerogpu_generate_simple(prompt_str: str, gen_kwargs: Dict[str, Any], rose_map: Optional[Dict[str, float]], rose_alpha: float, rose_score: Optional[float], seed: Optional[int]) -> Dict[str, str]:
427
- """Straight chat_template path. No Harmony tokens. Slices completion from prompt_len.
428
- Mirrors the minimal HF example and avoids header loops entirely."""
 
 
 
 
 
 
 
 
429
  model = None
430
  try:
431
  if seed is not None:
432
  torch.manual_seed(int(seed))
433
- model = _load_model_on("auto")
434
- device = next(model.parameters()).device
435
 
436
- # Encode prompt string
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437
  enc = tokenizer(prompt_str, return_tensors="pt")
438
  inputs = {k: v.to(device) for k, v in enc.items()}
439
- prompt_len = int(inputs["input_ids"].shape[1])
440
  if "attention_mask" not in inputs:
441
  inputs["attention_mask"] = torch.ones_like(inputs["input_ids"], dtype=torch.long, device=device)
 
442
 
443
- # Optional Rose bias
444
  logits_processor = None
445
- if rose_map:
446
- bias = build_bias_from_tokens(tokenizer, rose_map).to(device)
447
- eff_alpha = float(rose_alpha) * (float(rose_score) if rose_score is not None else 1.0)
448
- logits_processor = [RoseGuidedLogits(bias, eff_alpha)]
449
 
450
- out_ids = model.generate(
451
  **inputs,
452
- do_sample=bool(gen_kwargs.get("do_sample", True)),
453
- temperature=float(gen_kwargs.get("temperature", 0.6)),
454
- top_p=(float(gen_kwargs.get("top_p")) if gen_kwargs.get("top_p") is not None else None),
455
- top_k=(int(gen_kwargs.get("top_k")) if gen_kwargs.get("top_k") else None),
456
- max_new_tokens=int(gen_kwargs.get("max_new_tokens", MAX_DEF)),
457
  pad_token_id=model.config.pad_token_id,
458
  logits_processor=logits_processor,
459
  )
460
- # Slice generated continuation only
461
- new_ids = out_ids[0, prompt_len:]
462
- text = tokenizer.decode(new_ids, skip_special_tokens=True)
463
- return {"final": text}
464
  except Exception as e:
465
- return {"final": f"[Error] {type(e).__name__}: {e}"}
466
  finally:
467
  try:
468
  del model
@@ -473,345 +153,58 @@ def zerogpu_generate_simple(prompt_str: str, gen_kwargs: Dict[str, Any], rose_ma
473
  torch.cuda.empty_cache()
474
 
475
  # -----------------------
476
- # GPU Debug: Harmony Inspector
477
- # -----------------------
478
- @spaces.GPU(duration=120)
479
- def zerogpu_generate_debug(full_prompt, gen_kwargs: Dict[str, Any]) -> Dict[str, Any]:
480
- """Minimal GPU path to run a single prompt and return Harmony-parsed output
481
- along with short token previews for debugging. Does not use Rose for clarity."""
482
- model = None
483
- try:
484
- model = _load_model_on("auto")
485
- device = next(model.parameters()).device
486
-
487
- # Prepare inputs (tokens if Harmony renderer used, else string -> encode)
488
- if HARMONY_AVAILABLE and not isinstance(full_prompt, str):
489
- token_list = list(full_prompt)
490
- if not token_list:
491
- raise ValueError("Harmony prompt produced no tokens")
492
- input_ids = torch.tensor([token_list], dtype=torch.long, device=device)
493
- attention_mask = torch.ones_like(input_ids, dtype=torch.long, device=device)
494
- inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
495
- prompt_len = input_ids.shape[1]
496
- else:
497
- enc = tokenizer(full_prompt, return_tensors="pt")
498
- inputs = {k: v.to(device) for k, v in enc.items()}
499
- if "attention_mask" not in inputs:
500
- inputs["attention_mask"] = torch.ones_like(inputs["input_ids"], dtype=torch.long, device=device)
501
- prompt_len = int(inputs["input_ids"].shape[1])
502
-
503
- # Harmony stop via stopping criteria
504
- sc = StoppingCriteriaList([StopOnTokens(HARMONY_STOP_IDS)]) if (HARMONY_AVAILABLE and HARMONY_STOP_IDS) else None
505
-
506
- out_ids = model.generate(
507
- **inputs,
508
- do_sample=bool(gen_kwargs.get("do_sample", True)),
509
- temperature=float(gen_kwargs.get("temperature", 0.7)),
510
- top_p=float(gen_kwargs.get("top_p", 0.9)),
511
- top_k=(int(gen_kwargs.get("top_k")) if gen_kwargs.get("top_k") and int(gen_kwargs.get("top_k")) > 0 else None),
512
- max_new_tokens=int(gen_kwargs.get("max_new_tokens", MAX_DEF)),
513
- pad_token_id=model.config.pad_token_id,
514
- eos_token_id=tokenizer.eos_token_id,
515
- stopping_criteria=sc,
516
- repetition_penalty=float(gen_kwargs.get("repetition_penalty", 1.15)),
517
- no_repeat_ngram_size=int(gen_kwargs.get("no_repeat_ngram_size", 6)),
518
- )
519
-
520
- out_list = out_ids[0].tolist()
521
- gen_ids = out_list[prompt_len:]
522
- # Truncate at first Harmony stop token if present
523
- if HARMONY_AVAILABLE and HARMONY_STOP_IDS:
524
- for sid in HARMONY_STOP_IDS:
525
- if sid in gen_ids:
526
- gen_ids = gen_ids[:gen_ids.index(sid)]
527
- break
528
-
529
- # Parse channels
530
- if HARMONY_AVAILABLE:
531
- try:
532
- channels = parse_harmony_response(gen_ids)
533
- except Exception:
534
- decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
535
- channels = {"final": extract_final_channel_fallback(decoded), "raw": decoded}
536
- else:
537
- decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
538
- channels = {"final": extract_final_channel_fallback(decoded), "raw": decoded}
539
-
540
- # Small previews (avoid flooding logs/UI)
541
- preview = {
542
- "prompt_len": int(prompt_len),
543
- "stop_ids": list(HARMONY_STOP_IDS) if HARMONY_AVAILABLE else [],
544
- "gen_len": int(len(gen_ids)),
545
- "gen_ids_head": gen_ids[:48],
546
- "decoded_head": tokenizer.decode(gen_ids[:256], skip_special_tokens=False),
547
- "channels": channels,
548
- }
549
- return preview
550
- except Exception as e:
551
- return {"error": f"{type(e).__name__}: {e}"}
552
- finally:
553
- try:
554
- del model
555
- except Exception:
556
- pass
557
- gc.collect()
558
- if torch.cuda.is_available():
559
- torch.cuda.empty_cache()
560
-
561
- # -----------------------
562
- # Gradio handlers
563
- # -----------------------
564
-
565
- def generate_response(message: str, history: List[List[str]], system_prompt: str,
566
- temperature: float, top_p: float, top_k: int, max_new_tokens: int,
567
- do_sample: bool, seed: Optional[int],
568
- rose_enable: bool, rose_alpha: float, rose_score: Optional[float],
569
- rose_tokens: str, rose_json: str,
570
- show_thinking: bool = False,
571
- simple_mode: bool = True, # NEW: default to simple chat_template path
572
- reasoning_effort: str = "high") -> str:
573
- """
574
- Generate response with proper CoT handling using Harmony format.
575
- """
576
- try:
577
- # Build messages robustly for Gradio type='messages' or legacy tuple format
578
- messages = [{"role": "system", "content": system_prompt or SYSTEM_DEF}]
579
-
580
- # Add prior turns
581
- if history:
582
- if isinstance(history, list) and history and isinstance(history[0], dict):
583
- # history is already a flat list of {'role','content'} dicts
584
- for m in history:
585
- role = m.get("role")
586
- content = m.get("content", "")
587
- if role in ("user", "assistant"):
588
- messages.append({"role": role, "content": str(content)})
589
- else:
590
- for turn in history:
591
- if isinstance(turn, (list, tuple)) and len(turn) >= 2:
592
- u, a = turn[0], turn[1]
593
- if u:
594
- messages.append({"role": "user", "content": str(u)})
595
- if a:
596
- messages.append({"role": "assistant", "content": str(a)})
597
-
598
- # Current user message
599
- if isinstance(message, dict):
600
- user_text = message.get("content", "")
601
- else:
602
- user_text = str(message)
603
- messages.append({"role": "user", "content": user_text})
604
-
605
- # FAST PATH: simple chat_template prompt (recommended)
606
- if simple_mode:
607
- prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
608
- # Harmony path (optional)
609
- elif HARMONY_AVAILABLE:
610
- prompt = create_harmony_prompt(messages, reasoning_effort) # returns token IDs
611
- else:
612
- # Fallback to tokenizer template (string)
613
- prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
614
-
615
- # Build Rose map if enabled
616
- rose_map: Optional[Dict[str, float]] = None
617
- if rose_enable:
618
- rose_map = {}
619
- tok_str = (rose_tokens or "").strip()
620
- if tok_str:
621
- for p in [p.strip() for p in tok_str.split(",") if p.strip()]:
622
- if ":" in p:
623
- k, v = p.split(":", 1)
624
- try:
625
- rose_map[k.strip()] = float(v)
626
- except:
627
- pass
628
- if rose_json:
629
- try:
630
- j = json.loads(rose_json)
631
- if isinstance(j, dict):
632
- for k, v in j.items():
633
- try:
634
- rose_map[str(k)] = float(v)
635
- except:
636
- pass
637
- except:
638
- pass
639
- if not rose_map:
640
- rose_map = None
641
-
642
- # Generate with model
643
- if simple_mode:
644
- channels = zerogpu_generate_simple(
645
- prompt,
646
- {
647
- "do_sample": bool(do_sample),
648
- "temperature": float(temperature),
649
- "top_p": float(top_p) if top_p is not None else None,
650
- "top_k": int(top_k) if top_k > 0 else None,
651
- "max_new_tokens": int(max_new_tokens),
652
- },
653
- rose_map,
654
- float(rose_alpha),
655
- float(rose_score) if rose_score is not None else None,
656
- int(seed) if seed is not None else None,
657
- )
658
- else:
659
- channels = zerogpu_generate(
660
- prompt,
661
- {
662
- "do_sample": bool(do_sample),
663
- "temperature": float(temperature),
664
- "top_p": float(top_p),
665
- "top_k": int(top_k) if top_k > 0 else None,
666
- "max_new_tokens": int(max_new_tokens),
667
- },
668
- rose_map,
669
- float(rose_alpha),
670
- float(rose_score) if rose_score is not None else None,
671
- int(seed) if seed is not None else None,
672
- )
673
-
674
- # Format response
675
- if show_thinking:
676
- # Show all channels
677
- response = "## Chain of Thought:\n\n"
678
- for channel, content in channels.items():
679
- if channel != "final" and content:
680
- response += f"### {channel.capitalize()} Channel:\n{content}\n\n"
681
- response += f"### Final Response:\n{channels.get('final', 'No final response generated')}"
682
- return response
683
- else:
684
- # Just show the final response
685
- return channels.get("final", "No final response generated")
686
-
687
- except Exception as e:
688
- return f"[Error] {type(e).__name__}: {str(e)}"
689
 
690
- # -----------------------
691
- # Extra handler: Harmony Inspector wrapper
692
- # -----------------------
693
 
694
- def harmony_inspect_handler(user_prompt: str, system_prompt: str, reasoning_effort: str):
695
  try:
696
- msgs = [{"role": "system", "content": system_prompt or SYSTEM_DEF}, {"role": "user", "content": user_prompt or "What is 2+2?"}]
697
- prompt = create_harmony_prompt(msgs, reasoning_effort)
698
- return zerogpu_generate_debug(
699
- prompt,
700
- {"do_sample": True, "temperature": 0.7, "top_p": 0.9, "top_k": 0, "max_new_tokens": MAX_DEF}
701
- )
702
  except Exception as e:
703
- return {"error": f"{type(e).__name__}: {e}"}
704
 
705
- # -----------------------
706
- # UI
707
- # -----------------------
708
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
709
- gr.Markdown(
710
- """
711
- # Mirel Harmony Chain-of-Thought Inference
712
-
713
- OSS-20B model using Harmony format with thinking channels.
714
- The model thinks through problems in internal channels before providing a final response.
715
-
716
- **Note:** Install `openai-harmony` for full Harmony support: `pip install openai-harmony`
717
- """
718
- )
719
-
720
- with gr.Row():
721
- system_prompt = gr.Textbox(
722
- label="System Prompt",
723
- value=SYSTEM_DEF,
724
- lines=2
725
- )
726
-
727
- with gr.Accordion("Generation Settings ", open=False):
728
- # NEW: toggle to bypass Harmony and use plain chat_template like your minimal script
729
- simple_mode = gr.Checkbox(
730
- value=True,
731
- label="Use simple chat_template (no Harmony)",
732
- info="Matches the minimal HF example; safest path for now"
733
- )
734
- with gr.Row():
735
- temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Temperature")
736
- top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.01, label="Top-p")
737
- top_k = gr.Slider(0, 200, value=0, step=1, label="Top-k (0=disabled)")
738
- with gr.Row():
739
- max_new = gr.Slider(16, 4096, value=MAX_DEF, step=16, label="Max new tokens")
740
- do_sample = gr.Checkbox(value=True, label="Do sample")
741
- seed = gr.Number(value=None, label="Seed (optional)", precision=0)
742
- with gr.Row():
743
- reasoning_effort = gr.Radio(
744
- choices=["low", "medium", "high"],
745
- value="high",
746
- label="Reasoning Effort",
747
- info="How much thinking the model should do"
748
- )
749
- show_thinking = gr.Checkbox(
750
- value=False,
751
- label="Show thinking channels",
752
- info="Display all internal reasoning channels"
753
- )
754
-
755
- with gr.Accordion("Rose Guidance (Optional)", open=False):
756
- gr.Markdown("Fine-tune generation with token biases")
757
- with gr.Row():
758
- rose_enable = gr.Checkbox(value=False, label="Enable Rose bias")
759
- rose_alpha = gr.Slider(0.0, 5.0, value=1.0, step=0.05, label="Alpha (strength)")
760
- rose_score = gr.Slider(0.0, 1.0, value=1.0, step=0.01, label="Score multiplier")
761
- rose_tokens = gr.Textbox(
762
- label="Token:weight pairs",
763
- placeholder="example:1.5, test:-0.5",
764
- value=""
765
- )
766
- rose_json = gr.Textbox(
767
- label="JSON weights",
768
- placeholder='{"token": 1.0, "another": -0.5}',
769
- value=""
770
- )
771
-
772
- # --- Harmony Inspector UI ---
773
- with gr.Accordion("Harmony Inspector", open=False):
774
- debug_prompt = gr.Textbox(label="Debug prompt", value="What is 2+2? Reply with just the number.")
775
- run_debug = gr.Button("Run Harmony Inspect")
776
- debug_out = gr.JSON(label="Parsed Harmony output", value={})
777
- run_debug.click(harmony_inspect_handler, inputs=[debug_prompt, system_prompt, reasoning_effort], outputs=[debug_out])
778
-
779
- # Chat interface - using only valid parameters
780
- chat = gr.ChatInterface(
781
- fn=generate_response,
782
  type="messages",
783
- additional_inputs=[
784
- system_prompt, temperature, top_p, top_k, max_new,
785
- do_sample, seed, rose_enable, rose_alpha, rose_score,
786
- rose_tokens, rose_json, show_thinking, simple_mode, reasoning_effort
787
- ],
788
- title="Chat with Mirel",
789
- description="A chain-of-thought model using Harmony format",
790
- examples=[
791
- ["Hello! Can you introduce yourself?"],
792
- ["What is the capital of France?"],
793
- ["Explain quantum computing in simple terms"],
794
- ["Solve: If a train travels 120 miles in 2 hours, what is its average speed?"],
795
- ],
796
  cache_examples=False,
797
  )
798
 
799
- gr.Markdown(
800
- """
801
- ---
802
- ### Configuration:
803
- - **Model**: Set `MODEL_ID` env var (default: openai/gpt-oss-20b)
804
- - **Adapter**: Set `ADAPTER_ID` and optionally `ADAPTER_SUBFOLDER`
805
- - **Auth**: Set `HF_TOKEN` in Space secrets for private model access
806
- - **Harmony**: Install with `pip install openai-harmony` for proper channel support
807
-
808
- The model uses Harmony format with thinking channels (`thinking`, `analysis`, `final`).
809
- """
810
- )
811
-
812
  if __name__ == "__main__":
813
- demo.queue(max_size=8 if ZEROGPU else 32).launch(
814
- server_name="0.0.0.0",
815
- server_port=7860,
816
- share=False
817
- )
 
1
  """
2
+ Mirel Minimal Rose LoRA Inference (HF Space)
3
+ ZeroGPU-only, no Harmony, no extra config
 
4
  Single file: app.py
5
  """
6
  from __future__ import annotations
7
+ import os, gc, json, torch
8
+ from typing import Optional, Dict, Any, List
 
 
9
  import gradio as gr
10
+ import spaces
11
+ from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # -----------------------
14
+ # Constants / Env
15
  # -----------------------
16
+ MODEL_ID = os.getenv("MODEL_ID", "openai/gpt-oss-20b")
17
+ # Default to your Rose LoRA
18
+ ADAPTER_ID = os.getenv("ADAPTER_ID", "AbstractPhil/mirel-gpt-oss-20b")
19
+ ADAPTER_SUBFOLDER = os.getenv("ADAPTER_SUBFOLDER", "checkpoints/checkpoint-516")
 
 
 
 
 
 
 
 
 
 
 
 
20
  HF_TOKEN: Optional[str] = (
21
+ os.getenv("HF_TOKEN")
22
+ or os.getenv("HUGGING_FACE_HUB_TOKEN")
23
  or os.getenv("HUGGINGFACEHUB_API_TOKEN")
24
  or os.getenv("HF_ACCESS_TOKEN")
25
  )
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  os.environ["TOKENIZERS_PARALLELISM"] = "false"
28
 
29
+ # Tokenizer is lightweight; OK to load on CPU at import time
30
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
31
+ if tokenizer.pad_token_id is None:
32
+ tokenizer.pad_token_id = tokenizer.eos_token_id
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  # -----------------------
35
+ # Rose helpers
36
  # -----------------------
37
+ def _parse_rose_inputs(rose_tokens: str, rose_json: str) -> Optional[Dict[str, float]]:
38
+ """Merge "token:weight, ..." and JSON {token: weight} into a dict."""
39
+ mapping: Dict[str, float] = {}
40
+ if rose_tokens:
41
+ for part in [p.strip() for p in rose_tokens.split(",") if p.strip()]:
42
+ if ":" in part:
43
+ k, v = part.split(":", 1)
44
+ try:
45
+ mapping[k.strip()] = float(v)
46
+ except Exception:
47
+ pass
48
+ if rose_json:
 
 
 
 
 
49
  try:
50
+ j = json.loads(rose_json)
51
+ if isinstance(j, dict):
52
+ for k, v in j.items():
53
+ try:
54
+ mapping[str(k)] = float(v)
55
+ except Exception:
56
+ pass
57
  except Exception:
58
  pass
59
+ return mapping or None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ class _RoseLogits(torch.nn.Module):
62
+ def __init__(self, bias_vec: torch.Tensor, alpha: float = 1.0):
63
+ super().__init__()
64
+ self.bias_vec = bias_vec
65
+ self.alpha = float(alpha)
66
+ def forward(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
67
+ return scores + self.alpha * self.bias_vec.to(scores.device)
68
 
69
+ def _bias_from_tokens(tok, mapping: Dict[str, float]) -> torch.Tensor:
70
+ bias = torch.zeros(len(tok), dtype=torch.float32)
71
+ for s, w in mapping.items():
72
+ tid = tok.convert_tokens_to_ids(s)
 
 
 
 
73
  if isinstance(tid, list):
74
  for t in tid:
75
  if isinstance(t, int) and t >= 0:
 
78
  bias[tid] += float(w)
79
  return bias
80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  # -----------------------
82
+ # ZeroGPU inference (GPU work ONLY inside this function)
83
  # -----------------------
84
  @spaces.GPU(duration=120)
85
+ def gpu_generate(prompt_str: str,
86
+ temperature: float,
87
+ max_new_tokens: int,
88
+ rose_tokens: str,
89
+ rose_json: str,
90
+ rose_alpha: float,
91
+ seed: Optional[int]) -> str:
92
+ """Run a single completion on GPU and return only the generated text.
93
+ No Harmony. Uses chat template; slices completion by prompt length.
94
+ """
95
+ torch.set_grad_enabled(False)
96
  model = None
97
  try:
98
  if seed is not None:
99
  torch.manual_seed(int(seed))
 
 
100
 
101
+ from peft import PeftModel
102
+ # Load base model on GPU via accelerate's device_map
103
+ model = AutoModelForCausalLM.from_pretrained(
104
+ MODEL_ID,
105
+ device_map="auto",
106
+ torch_dtype="auto",
107
+ trust_remote_code=True,
108
+ low_cpu_mem_usage=True,
109
+ token=HF_TOKEN,
110
+ )
111
+ if ADAPTER_ID:
112
+ peft_kwargs: Dict[str, Any] = {"is_trainable": False, "token": HF_TOKEN}
113
+ if ADAPTER_SUBFOLDER:
114
+ peft_kwargs["subfolder"] = ADAPTER_SUBFOLDER
115
+ model = PeftModel.from_pretrained(model, ADAPTER_ID, **peft_kwargs)
116
+ model.eval()
117
+ if getattr(model.config, "pad_token_id", None) is None:
118
+ model.config.pad_token_id = tokenizer.pad_token_id
119
+
120
+ device = next(model.parameters()).device
121
  enc = tokenizer(prompt_str, return_tensors="pt")
122
  inputs = {k: v.to(device) for k, v in enc.items()}
 
123
  if "attention_mask" not in inputs:
124
  inputs["attention_mask"] = torch.ones_like(inputs["input_ids"], dtype=torch.long, device=device)
125
+ prompt_len = int(inputs["input_ids"].shape[1])
126
 
127
+ # Rose bias (optional)
128
  logits_processor = None
129
+ mapping = _parse_rose_inputs(rose_tokens, rose_json)
130
+ if mapping:
131
+ bias = _bias_from_tokens(tokenizer, mapping).to(device)
132
+ logits_processor = [_RoseLogits(bias, float(rose_alpha))]
133
 
134
+ out = model.generate(
135
  **inputs,
136
+ do_sample=True,
137
+ temperature=float(temperature),
138
+ max_new_tokens=int(max_new_tokens),
 
 
139
  pad_token_id=model.config.pad_token_id,
140
  logits_processor=logits_processor,
141
  )
142
+ new_ids = out[0, prompt_len:]
143
+ return tokenizer.decode(new_ids, skip_special_tokens=True)
 
 
144
  except Exception as e:
145
+ return f"[Error] {type(e).__name__}: {e}"
146
  finally:
147
  try:
148
  del model
 
153
  torch.cuda.empty_cache()
154
 
155
  # -----------------------
156
+ # Gradio glue (no streaming; minimal controls)
157
+ # -----------------------
158
+ def _build_messages(message, history) -> List[Dict[str, str]]:
159
+ msgs: List[Dict[str, str]] = []
160
+ # Keep it simple: prepend a small system to steady tone
161
+ msgs.append({"role": "system", "content": "You are Mirel."})
162
+ if isinstance(history, list):
163
+ for m in history:
164
+ if isinstance(m, dict) and "role" in m:
165
+ msgs.append({"role": m["role"], "content": str(m.get("content", ""))})
166
+ elif isinstance(m, (list, tuple)) and len(m) >= 2:
167
+ u, a = m[0], m[1]
168
+ if u: msgs.append({"role": "user", "content": str(u)})
169
+ if a: msgs.append({"role": "assistant", "content": str(a)})
170
+ if isinstance(message, dict):
171
+ msgs.append({"role": message.get("role", "user"), "content": str(message.get("content", ""))})
172
+ else:
173
+ msgs.append({"role": "user", "content": str(message)})
174
+ return msgs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
 
 
 
 
176
 
177
+ def ui_generate(message, history, temperature, max_new_tokens, rose_alpha, rose_tokens, rose_json, seed):
178
  try:
179
+ msgs = _build_messages(message, history)
180
+ prompt = tokenizer.apply_chat_template(msgs, add_generation_prompt=True, tokenize=False)
181
+ return gpu_generate(prompt, float(temperature), int(max_new_tokens), rose_tokens or "", rose_json or "", float(rose_alpha), int(seed) if seed is not None else None)
 
 
 
182
  except Exception as e:
183
+ return f"[Error] {type(e).__name__}: {e}"
184
 
 
 
 
185
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
186
+ gr.Markdown("""
187
+ # Mirel – Rose LoRA Inference (ZeroGPU)
188
+ Minimal chat using your Rose LoRA adapter. No Harmony. GPU work runs under ZeroGPU.
189
+ """)
190
+
191
+ with gr.Accordion("Generation", open=True):
192
+ temperature = gr.Slider(0.0, 2.0, value=0.6, step=0.05, label="Temperature")
193
+ max_new = gr.Slider(16, 2048, value=512, step=8, label="Max new tokens")
194
+ seed = gr.Number(value=None, label="Seed (optional)", precision=0)
195
+
196
+ with gr.Accordion("Rose guidance", open=False):
197
+ rose_alpha = gr.Slider(0.0, 5.0, value=1.0, step=0.05, label="Alpha (strength)")
198
+ rose_tokens = gr.Textbox(label="token:weight comma list", placeholder="e.g. reason:1.2, simple:-0.4", value="")
199
+ rose_json = gr.Textbox(label="JSON {token: weight}", placeholder='{"reason": 1.0, "ramble": -0.8}', value="")
200
+
201
+ gr.ChatInterface(
202
+ fn=ui_generate,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  type="messages",
204
+ additional_inputs=[temperature, max_new, rose_alpha, rose_tokens, rose_json, seed],
205
+ title="Mirel",
 
 
 
 
 
 
 
 
 
 
 
206
  cache_examples=False,
207
  )
208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
  if __name__ == "__main__":
210
+ demo.queue(max_size=16).launch(server_name="0.0.0.0", server_port=7860)