Spaces:
Running
on
Zero
Running
on
Zero
AbstractPhil
commited on
Commit
·
bbabb73
1
Parent(s):
40292d5
finally got claude to add harmony format
Browse files- app.py +277 -253
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,17 +1,36 @@
|
|
1 |
"""
|
2 |
Mirel Harmony Inference – HF Space (Gradio)
|
3 |
ZeroGPU-ready, Harmony formatting, optional Rose-guided decoding
|
4 |
-
Chain-of-thought model with proper channel extraction
|
5 |
Single file: app.py
|
6 |
"""
|
7 |
from __future__ import annotations
|
8 |
-
import os, gc, json, threading, torch
|
9 |
from dataclasses import dataclass
|
10 |
-
from typing import List, Dict, Optional, Any
|
|
|
11 |
import gradio as gr
|
12 |
import spaces # required for ZeroGPU
|
13 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# -----------------------
|
16 |
# Config & runtime modes
|
17 |
# -----------------------
|
@@ -23,11 +42,14 @@ ADAPTER_SUBFOLDER = os.getenv("ADAPTER_SUBFOLDER") or None
|
|
23 |
ATTN_IMPL = os.getenv("ATTN_IMPL", "eager")
|
24 |
DTYPE = DTYPE_MAP.get(os.getenv("DTYPE", "bf16").lower(), torch.bfloat16)
|
25 |
SYSTEM_DEF = os.getenv("SYSTEM_PROMPT", "You are Mirel, a memory-stable symbolic assistant.")
|
26 |
-
MAX_DEF = int(os.getenv("MAX_NEW_TOKENS", "
|
27 |
-
ZEROGPU = os.getenv("ZEROGPU", os.getenv("ZERO_GPU", "
|
28 |
LOAD_4BIT = os.getenv("LOAD_4BIT", "0") == "1"
|
29 |
|
30 |
-
#
|
|
|
|
|
|
|
31 |
HF_TOKEN: Optional[str] = (
|
32 |
os.getenv("HF_TOKEN")
|
33 |
or os.getenv("HUGGING_FACE_HUB_TOKEN")
|
@@ -35,20 +57,34 @@ HF_TOKEN: Optional[str] = (
|
|
35 |
or os.getenv("HF_ACCESS_TOKEN")
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
50 |
|
51 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
try:
|
53 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
|
54 |
print(f"[Model] Successfully loaded tokenizer from {MODEL_ID}")
|
@@ -57,11 +93,8 @@ except Exception as e:
|
|
57 |
raise
|
58 |
|
59 |
# -----------------------
|
60 |
-
#
|
61 |
# -----------------------
|
62 |
-
_model: Optional[AutoModelForCausalLM] = None
|
63 |
-
_model_lock = threading.Lock()
|
64 |
-
|
65 |
try:
|
66 |
from peft import PeftModel
|
67 |
_HAS_PEFT = True
|
@@ -76,12 +109,11 @@ def _build_model_kwargs(device_map: Optional[str]) -> Dict[str, Any]:
|
|
76 |
attn_implementation=ATTN_IMPL if device_map != "cpu" else "eager",
|
77 |
trust_remote_code=True,
|
78 |
low_cpu_mem_usage=True,
|
79 |
-
token=HF_TOKEN,
|
80 |
)
|
81 |
-
# Only enable 4-bit when not explicitly CPU-bound
|
82 |
if LOAD_4BIT and device_map != "cpu":
|
83 |
try:
|
84 |
-
import bitsandbytes as _bnb
|
85 |
kw.update(load_in_4bit=True)
|
86 |
if kw["device_map"] is None:
|
87 |
kw["device_map"] = "auto"
|
@@ -109,30 +141,88 @@ def _load_model_on(device_map: Optional[str]) -> AutoModelForCausalLM:
|
|
109 |
return model
|
110 |
|
111 |
# -----------------------
|
112 |
-
# Harmony formatting
|
113 |
# -----------------------
|
114 |
|
115 |
-
def
|
116 |
-
"""
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
def
|
127 |
-
"""
|
128 |
-
Extract the final channel from chain-of-thought output.
|
129 |
-
The model outputs thinking in internal channels and final response in final channel.
|
130 |
-
"""
|
131 |
# Look for the final channel marker
|
132 |
final_marker = "<|channel|>final<|message|>"
|
133 |
|
134 |
if final_marker in text:
|
135 |
-
# Extract everything after the final channel marker
|
136 |
parts = text.split(final_marker)
|
137 |
if len(parts) > 1:
|
138 |
final_text = parts[-1]
|
@@ -145,16 +235,15 @@ def extract_final_channel(text: str) -> str:
|
|
145 |
|
146 |
return final_text.strip()
|
147 |
|
148 |
-
# If no channel markers found, return
|
149 |
-
# (might be a non-CoT response or error)
|
150 |
return text.strip()
|
151 |
|
152 |
# -----------------------
|
153 |
-
#
|
154 |
# -----------------------
|
155 |
|
156 |
def build_bias_from_tokens(tokenizer, mapping: Dict[str, float]) -> torch.Tensor:
|
157 |
-
"""Create vocab bias from {token: weight}.
|
158 |
vocab_size = len(tokenizer)
|
159 |
bias = torch.zeros(vocab_size, dtype=torch.float32)
|
160 |
for tok, w in mapping.items():
|
@@ -178,168 +267,110 @@ class RoseGuidedLogits(torch.nn.Module):
|
|
178 |
def forward(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
179 |
return scores + self.alpha * self.bias_vec.to(scores.device)
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
if seed is not None:
|
193 |
-
torch.manual_seed(int(seed))
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
print(f"[Error] {error_msg}")
|
231 |
-
print(traceback.format_exc())
|
232 |
-
return error_msg
|
233 |
-
finally:
|
234 |
-
# Cleanup
|
235 |
-
try:
|
236 |
-
del model
|
237 |
-
except:
|
238 |
-
pass
|
239 |
-
gc.collect()
|
240 |
-
if torch.cuda.is_available():
|
241 |
-
torch.cuda.empty_cache()
|
242 |
-
else:
|
243 |
-
def zerogpu_generate(full_prompt: str,
|
244 |
-
gen_kwargs: Dict[str, Any],
|
245 |
-
rose_map: Optional[Dict[str, float]],
|
246 |
-
rose_alpha: float,
|
247 |
-
rose_score: Optional[float],
|
248 |
-
seed: Optional[int]) -> str:
|
249 |
-
"""Run inference without ZeroGPU decorator."""
|
250 |
-
# Same implementation as above but without the decorator
|
251 |
try:
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
# Setup logits processor for Rose guidance
|
260 |
-
logits_processor = None
|
261 |
-
if rose_map:
|
262 |
-
bias = build_bias_from_tokens(tokenizer, rose_map).to(next(model.parameters()).device)
|
263 |
-
eff_alpha = float(rose_alpha) * (float(rose_score) if rose_score is not None else 1.0)
|
264 |
-
logits_processor = [RoseGuidedLogits(bias, eff_alpha)]
|
265 |
-
|
266 |
-
# Tokenize input
|
267 |
-
inputs = tokenizer(full_prompt, return_tensors="pt").to(next(model.parameters()).device)
|
268 |
-
|
269 |
-
# Non-streaming generation
|
270 |
-
out_ids = model.generate(
|
271 |
-
**inputs,
|
272 |
-
do_sample=bool(gen_kwargs.get("do_sample", True)),
|
273 |
-
temperature=float(gen_kwargs.get("temperature", 0.7)),
|
274 |
-
top_p=float(gen_kwargs.get("top_p", 0.9)),
|
275 |
-
top_k=(int(gen_kwargs.get("top_k")) if gen_kwargs.get("top_k") and int(gen_kwargs.get("top_k")) > 0 else None),
|
276 |
-
max_new_tokens=int(gen_kwargs.get("max_new_tokens", MAX_DEF)),
|
277 |
-
pad_token_id=tokenizer.eos_token_id,
|
278 |
-
eos_token_id=tokenizer.eos_token_id,
|
279 |
-
logits_processor=logits_processor,
|
280 |
-
)
|
281 |
-
|
282 |
-
# Decode the full output (including special tokens for CoT)
|
283 |
-
prompt_len = int(inputs["input_ids"].shape[1])
|
284 |
-
gen_ids = out_ids[0][prompt_len:]
|
285 |
-
decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
|
286 |
-
|
287 |
-
return decoded
|
288 |
-
|
289 |
-
except Exception as e:
|
290 |
-
error_msg = f"Generation failed: {str(e)}"
|
291 |
-
print(f"[Error] {error_msg}")
|
292 |
-
print(traceback.format_exc())
|
293 |
-
return error_msg
|
294 |
-
finally:
|
295 |
-
# Cleanup
|
296 |
-
try:
|
297 |
-
del model
|
298 |
-
except:
|
299 |
-
pass
|
300 |
-
gc.collect()
|
301 |
-
if torch.cuda.is_available():
|
302 |
-
torch.cuda.empty_cache()
|
303 |
|
304 |
# -----------------------
|
305 |
# Gradio handlers
|
306 |
# -----------------------
|
307 |
|
308 |
-
def
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
continue
|
316 |
-
if isinstance(item, (list, tuple)) and len(item) == 2:
|
317 |
-
u, a = item
|
318 |
-
if u is not None:
|
319 |
-
msgs.append({"role": "user", "content": str(u)})
|
320 |
-
if a:
|
321 |
-
msgs.append({"role": "assistant", "content": str(a)})
|
322 |
-
return msgs
|
323 |
-
|
324 |
-
def generate_response(message: Any, history: List[Any], system_prompt: str,
|
325 |
-
temperature: float, top_p: float, top_k: int, max_new_tokens: int,
|
326 |
-
do_sample: bool, seed: Optional[int],
|
327 |
-
rose_enable: bool, rose_alpha: float, rose_score: Optional[float],
|
328 |
-
rose_tokens: str, rose_json: str,
|
329 |
-
show_thinking: bool = False) -> str:
|
330 |
"""
|
331 |
-
|
332 |
-
Returns a complete response to avoid h11 Content-Length issues.
|
333 |
"""
|
334 |
try:
|
335 |
-
#
|
336 |
-
|
337 |
-
message = message.get("content", "")
|
338 |
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
# Build Rose map if enabled
|
345 |
rose_map: Optional[Dict[str, float]] = None
|
@@ -367,9 +398,9 @@ def generate_response(message: Any, history: List[Any], system_prompt: str,
|
|
367 |
pass
|
368 |
if not rose_map:
|
369 |
rose_map = None
|
370 |
-
|
371 |
# Generate with model
|
372 |
-
|
373 |
prompt,
|
374 |
{
|
375 |
"do_sample": bool(do_sample),
|
@@ -384,57 +415,43 @@ def generate_response(message: Any, history: List[Any], system_prompt: str,
|
|
384 |
int(seed) if seed is not None else None,
|
385 |
)
|
386 |
|
387 |
-
#
|
388 |
if show_thinking:
|
389 |
-
# Show
|
390 |
-
|
|
|
|
|
|
|
|
|
|
|
391 |
else:
|
392 |
# Just show the final response
|
393 |
-
return
|
394 |
|
395 |
except Exception as e:
|
396 |
-
|
397 |
-
print(f"[Error in generate_response] {error_msg}")
|
398 |
-
print(traceback.format_exc())
|
399 |
-
return error_msg
|
400 |
|
401 |
# -----------------------
|
402 |
# UI
|
403 |
# -----------------------
|
404 |
-
|
405 |
-
#chatbot {
|
406 |
-
height: 500px;
|
407 |
-
}
|
408 |
-
.gradio-container {
|
409 |
-
max-width: 1200px !important;
|
410 |
-
}
|
411 |
-
"""
|
412 |
-
|
413 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
414 |
gr.Markdown(
|
415 |
"""
|
416 |
-
# Mirel – Harmony Inference
|
417 |
|
418 |
-
|
419 |
-
The model thinks through problems
|
420 |
|
421 |
-
**
|
422 |
"""
|
423 |
)
|
424 |
|
425 |
with gr.Row():
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
)
|
432 |
-
with gr.Column(scale=1):
|
433 |
-
show_thinking = gr.Checkbox(
|
434 |
-
value=False,
|
435 |
-
label="Show thinking process",
|
436 |
-
info="Display internal CoT reasoning"
|
437 |
-
)
|
438 |
|
439 |
with gr.Accordion("Generation Settings", open=False):
|
440 |
with gr.Row():
|
@@ -445,6 +462,18 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
445 |
max_new = gr.Slider(16, 4096, value=MAX_DEF, step=16, label="Max new tokens")
|
446 |
do_sample = gr.Checkbox(value=True, label="Do sample")
|
447 |
seed = gr.Number(value=None, label="Seed (optional)", precision=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
|
449 |
with gr.Accordion("Rose Guidance (Optional)", open=False):
|
450 |
gr.Markdown("Fine-tune generation with token biases")
|
@@ -466,46 +495,41 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
466 |
# Chat interface
|
467 |
chat = gr.ChatInterface(
|
468 |
fn=generate_response,
|
469 |
-
chatbot=gr.Chatbot(elem_id="chatbot", height=500, type="messages"),
|
470 |
additional_inputs=[
|
471 |
system_prompt, temperature, top_p, top_k, max_new,
|
472 |
do_sample, seed, rose_enable, rose_alpha, rose_score,
|
473 |
-
rose_tokens, rose_json, show_thinking
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
],
|
475 |
-
title=None, # Title already in markdown
|
476 |
-
description=None, # Description already in markdown
|
477 |
cache_examples=False,
|
|
|
|
|
|
|
478 |
)
|
479 |
|
480 |
gr.Markdown(
|
481 |
"""
|
482 |
---
|
483 |
-
### Configuration
|
484 |
-
|
485 |
-
**Authentication Options:**
|
486 |
-
1. **Browser OAuth**: Click "Sign in with Hugging Face" above (easiest)
|
487 |
-
2. **Environment Token**: Set `HF_TOKEN` in Space secrets
|
488 |
-
3. **No Auth**: Works for public models only
|
489 |
-
|
490 |
-
**Important:** For OAuth to work in Spaces, add `hf_oauth: true` to your README.md metadata
|
491 |
-
|
492 |
-
**Other Settings:**
|
493 |
- **Model**: Set `MODEL_ID` env var (default: openai/gpt-oss-20b)
|
494 |
-
- **Adapter**: Set `ADAPTER_ID` and optionally `ADAPTER_SUBFOLDER`
|
495 |
-
- **
|
496 |
-
- **
|
497 |
|
498 |
-
The model uses
|
499 |
-
Enable "Show thinking process" to see the full chain-of-thought.
|
500 |
"""
|
501 |
)
|
502 |
|
503 |
if __name__ == "__main__":
|
504 |
-
|
505 |
-
demo.queue(
|
506 |
-
max_size=10,
|
507 |
-
).launch(
|
508 |
server_name="0.0.0.0",
|
509 |
server_port=7860,
|
510 |
-
share=False
|
511 |
)
|
|
|
1 |
"""
|
2 |
Mirel Harmony Inference – HF Space (Gradio)
|
3 |
ZeroGPU-ready, Harmony formatting, optional Rose-guided decoding
|
4 |
+
Chain-of-thought model with proper channel extraction using openai_harmony
|
5 |
Single file: app.py
|
6 |
"""
|
7 |
from __future__ import annotations
|
8 |
+
import os, gc, json, threading, torch
|
9 |
from dataclasses import dataclass
|
10 |
+
from typing import List, Dict, Optional, Any
|
11 |
+
from datetime import datetime
|
12 |
import gradio as gr
|
13 |
import spaces # required for ZeroGPU
|
14 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
|
16 |
+
# Import Harmony components
|
17 |
+
try:
|
18 |
+
from openai_harmony import (
|
19 |
+
Author,
|
20 |
+
Conversation,
|
21 |
+
HarmonyEncodingName,
|
22 |
+
Message,
|
23 |
+
Role,
|
24 |
+
SystemContent,
|
25 |
+
DeveloperContent,
|
26 |
+
load_harmony_encoding,
|
27 |
+
ReasoningEffort
|
28 |
+
)
|
29 |
+
HARMONY_AVAILABLE = True
|
30 |
+
except ImportError:
|
31 |
+
print("[WARNING] openai_harmony not installed. Install with: pip install openai-harmony")
|
32 |
+
HARMONY_AVAILABLE = False
|
33 |
+
|
34 |
# -----------------------
|
35 |
# Config & runtime modes
|
36 |
# -----------------------
|
|
|
42 |
ATTN_IMPL = os.getenv("ATTN_IMPL", "eager")
|
43 |
DTYPE = DTYPE_MAP.get(os.getenv("DTYPE", "bf16").lower(), torch.bfloat16)
|
44 |
SYSTEM_DEF = os.getenv("SYSTEM_PROMPT", "You are Mirel, a memory-stable symbolic assistant.")
|
45 |
+
MAX_DEF = int(os.getenv("MAX_NEW_TOKENS", "1024"))
|
46 |
+
ZEROGPU = os.getenv("ZEROGPU", os.getenv("ZERO_GPU", "0")) == "1"
|
47 |
LOAD_4BIT = os.getenv("LOAD_4BIT", "0") == "1"
|
48 |
|
49 |
+
# Harmony channels for CoT
|
50 |
+
REQUIRED_CHANNELS = ["thinking", "analysis", "final"]
|
51 |
+
|
52 |
+
# HF Auth - properly handle multiple token env var names
|
53 |
HF_TOKEN: Optional[str] = (
|
54 |
os.getenv("HF_TOKEN")
|
55 |
or os.getenv("HUGGING_FACE_HUB_TOKEN")
|
|
|
57 |
or os.getenv("HF_ACCESS_TOKEN")
|
58 |
)
|
59 |
|
60 |
+
def _hf_login() -> None:
|
61 |
+
"""Login to HF Hub using common env secret names."""
|
62 |
+
if HF_TOKEN:
|
63 |
+
try:
|
64 |
+
from huggingface_hub import login, whoami
|
65 |
+
login(token=HF_TOKEN, add_to_git_credential=True)
|
66 |
+
try:
|
67 |
+
who = whoami(token=HF_TOKEN)
|
68 |
+
print(f"[HF Auth] Logged in as: {who.get('name') or who.get('fullname') or who.get('id', 'unknown')}")
|
69 |
+
except Exception:
|
70 |
+
print("[HF Auth] Login successful but couldn't get user info")
|
71 |
+
except Exception as e:
|
72 |
+
print(f"[HF Auth] Login failed: {e}")
|
73 |
+
else:
|
74 |
+
print("[HF Auth] No token found in environment variables")
|
75 |
+
|
76 |
+
# Login before loading any models
|
77 |
+
_hf_login()
|
78 |
|
79 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
80 |
|
81 |
+
# Load Harmony encoding if available
|
82 |
+
if HARMONY_AVAILABLE:
|
83 |
+
harmony_encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
|
84 |
+
else:
|
85 |
+
harmony_encoding = None
|
86 |
+
|
87 |
+
# Tokenizer is lightweight; load once
|
88 |
try:
|
89 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
|
90 |
print(f"[Model] Successfully loaded tokenizer from {MODEL_ID}")
|
|
|
93 |
raise
|
94 |
|
95 |
# -----------------------
|
96 |
+
# Model loading
|
97 |
# -----------------------
|
|
|
|
|
|
|
98 |
try:
|
99 |
from peft import PeftModel
|
100 |
_HAS_PEFT = True
|
|
|
109 |
attn_implementation=ATTN_IMPL if device_map != "cpu" else "eager",
|
110 |
trust_remote_code=True,
|
111 |
low_cpu_mem_usage=True,
|
112 |
+
token=HF_TOKEN,
|
113 |
)
|
|
|
114 |
if LOAD_4BIT and device_map != "cpu":
|
115 |
try:
|
116 |
+
import bitsandbytes as _bnb
|
117 |
kw.update(load_in_4bit=True)
|
118 |
if kw["device_map"] is None:
|
119 |
kw["device_map"] = "auto"
|
|
|
141 |
return model
|
142 |
|
143 |
# -----------------------
|
144 |
+
# Harmony formatting
|
145 |
# -----------------------
|
146 |
|
147 |
+
def create_harmony_prompt(messages: List[Dict[str, str]], reasoning_effort: str = "high") -> str:
|
148 |
+
"""Create a proper Harmony-formatted prompt using openai_harmony."""
|
149 |
+
if not HARMONY_AVAILABLE:
|
150 |
+
# Fallback to tokenizer's chat template
|
151 |
+
return tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
152 |
+
|
153 |
+
# Map reasoning effort
|
154 |
+
effort_map = {
|
155 |
+
"low": ReasoningEffort.LOW,
|
156 |
+
"medium": ReasoningEffort.MEDIUM,
|
157 |
+
"high": ReasoningEffort.HIGH,
|
158 |
+
}
|
159 |
+
effort = effort_map.get(reasoning_effort.lower(), ReasoningEffort.HIGH)
|
160 |
+
|
161 |
+
# Create system message with channels
|
162 |
+
system_content = (
|
163 |
+
SystemContent.new()
|
164 |
+
.with_model_identity(messages[0]["content"] if messages else SYSTEM_DEF)
|
165 |
+
.with_reasoning_effort(effort)
|
166 |
+
.with_conversation_start_date(datetime.now().strftime("%Y-%m-%d"))
|
167 |
+
.with_knowledge_cutoff("2025-01")
|
168 |
+
.with_required_channels(REQUIRED_CHANNELS)
|
169 |
+
)
|
170 |
+
|
171 |
+
# Build conversation
|
172 |
+
harmony_messages = [
|
173 |
+
Message.from_role_and_content(Role.SYSTEM, system_content)
|
174 |
+
]
|
175 |
+
|
176 |
+
# Add user/assistant messages
|
177 |
+
for msg in messages[1:]: # Skip system message as we already added it
|
178 |
+
if msg["role"] == "user":
|
179 |
+
harmony_messages.append(
|
180 |
+
Message.from_role_and_content(Role.USER, msg["content"])
|
181 |
+
)
|
182 |
+
elif msg["role"] == "assistant":
|
183 |
+
# For assistant messages, we might want to preserve channels if they exist
|
184 |
+
harmony_messages.append(
|
185 |
+
Message.from_role_and_content(Role.ASSISTANT, msg["content"])
|
186 |
+
.with_channel("final") # Default to final channel
|
187 |
+
)
|
188 |
+
|
189 |
+
# Create conversation and render
|
190 |
+
convo = Conversation.from_messages(harmony_messages)
|
191 |
+
tokens = harmony_encoding.render_conversation_for_completion(convo, Role.ASSISTANT)
|
192 |
+
|
193 |
+
# Convert tokens back to text for the model
|
194 |
+
return tokenizer.decode(tokens)
|
195 |
+
|
196 |
+
def parse_harmony_response(tokens: List[int]) -> Dict[str, str]:
|
197 |
+
"""Parse response tokens using Harmony format to extract channels."""
|
198 |
+
if not HARMONY_AVAILABLE:
|
199 |
+
# Fallback: just decode and extract final channel manually
|
200 |
+
text = tokenizer.decode(tokens, skip_special_tokens=False)
|
201 |
+
return {"final": extract_final_channel_fallback(text), "raw": text}
|
202 |
+
|
203 |
+
# Parse messages from completion tokens
|
204 |
+
parsed_messages = harmony_encoding.parse_messages_from_completion_tokens(tokens, Role.ASSISTANT)
|
205 |
+
|
206 |
+
# Extract content by channel
|
207 |
+
channels = {}
|
208 |
+
for msg in parsed_messages:
|
209 |
+
channel = msg.channel if hasattr(msg, 'channel') else "final"
|
210 |
+
if channel not in channels:
|
211 |
+
channels[channel] = ""
|
212 |
+
channels[channel] += msg.content
|
213 |
+
|
214 |
+
# Ensure we have a final channel
|
215 |
+
if "final" not in channels:
|
216 |
+
channels["final"] = " ".join(channels.values())
|
217 |
+
|
218 |
+
return channels
|
219 |
|
220 |
+
def extract_final_channel_fallback(text: str) -> str:
|
221 |
+
"""Fallback extraction when harmony library isn't available."""
|
|
|
|
|
|
|
222 |
# Look for the final channel marker
|
223 |
final_marker = "<|channel|>final<|message|>"
|
224 |
|
225 |
if final_marker in text:
|
|
|
226 |
parts = text.split(final_marker)
|
227 |
if len(parts) > 1:
|
228 |
final_text = parts[-1]
|
|
|
235 |
|
236 |
return final_text.strip()
|
237 |
|
238 |
+
# If no channel markers found, return cleaned text
|
|
|
239 |
return text.strip()
|
240 |
|
241 |
# -----------------------
|
242 |
+
# Rose guidance
|
243 |
# -----------------------
|
244 |
|
245 |
def build_bias_from_tokens(tokenizer, mapping: Dict[str, float]) -> torch.Tensor:
|
246 |
+
"""Create vocab bias from {token: weight}."""
|
247 |
vocab_size = len(tokenizer)
|
248 |
bias = torch.zeros(vocab_size, dtype=torch.float32)
|
249 |
for tok, w in mapping.items():
|
|
|
267 |
def forward(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
268 |
return scores + self.alpha * self.bias_vec.to(scores.device)
|
269 |
|
270 |
+
@spaces.GPU(duration=120)
|
271 |
+
def zerogpu_generate(full_prompt: str,
|
272 |
+
gen_kwargs: Dict[str, Any],
|
273 |
+
rose_map: Optional[Dict[str, float]],
|
274 |
+
rose_alpha: float,
|
275 |
+
rose_score: Optional[float],
|
276 |
+
seed: Optional[int]) -> Dict[str, str]:
|
277 |
+
"""Run inference on GPU and return parsed channels."""
|
278 |
+
try:
|
279 |
+
if seed is not None:
|
280 |
+
torch.manual_seed(int(seed))
|
|
|
|
|
281 |
|
282 |
+
# Load model
|
283 |
+
model = _load_model_on("auto")
|
284 |
+
|
285 |
+
# Setup logits processor for Rose guidance
|
286 |
+
logits_processor = None
|
287 |
+
if rose_map:
|
288 |
+
bias = build_bias_from_tokens(tokenizer, rose_map).to(next(model.parameters()).device)
|
289 |
+
eff_alpha = float(rose_alpha) * (float(rose_score) if rose_score is not None else 1.0)
|
290 |
+
logits_processor = [RoseGuidedLogits(bias, eff_alpha)]
|
291 |
+
|
292 |
+
# Tokenize input
|
293 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(next(model.parameters()).device)
|
294 |
+
|
295 |
+
# Generate
|
296 |
+
out_ids = model.generate(
|
297 |
+
**inputs,
|
298 |
+
do_sample=bool(gen_kwargs.get("do_sample", True)),
|
299 |
+
temperature=float(gen_kwargs.get("temperature", 0.7)),
|
300 |
+
top_p=float(gen_kwargs.get("top_p", 0.9)),
|
301 |
+
top_k=(int(gen_kwargs.get("top_k")) if gen_kwargs.get("top_k") and int(gen_kwargs.get("top_k")) > 0 else None),
|
302 |
+
max_new_tokens=int(gen_kwargs.get("max_new_tokens", MAX_DEF)),
|
303 |
+
pad_token_id=tokenizer.eos_token_id,
|
304 |
+
eos_token_id=tokenizer.eos_token_id,
|
305 |
+
logits_processor=logits_processor,
|
306 |
+
)
|
307 |
+
|
308 |
+
# Extract generated tokens only
|
309 |
+
prompt_len = int(inputs["input_ids"].shape[1])
|
310 |
+
gen_ids = out_ids[0][prompt_len:].tolist()
|
311 |
+
|
312 |
+
# Parse response with Harmony
|
313 |
+
if HARMONY_AVAILABLE:
|
314 |
+
channels = parse_harmony_response(gen_ids)
|
315 |
+
else:
|
316 |
+
# Fallback
|
317 |
decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
|
318 |
+
channels = {
|
319 |
+
"final": extract_final_channel_fallback(decoded),
|
320 |
+
"raw": decoded
|
321 |
+
}
|
322 |
+
|
323 |
+
return channels
|
324 |
|
325 |
+
except Exception as e:
|
326 |
+
return {"final": f"[Error] {type(e).__name__}: {str(e)}", "raw": str(e)}
|
327 |
+
finally:
|
328 |
+
# Cleanup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
try:
|
330 |
+
del model
|
331 |
+
except:
|
332 |
+
pass
|
333 |
+
gc.collect()
|
334 |
+
if torch.cuda.is_available():
|
335 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
# -----------------------
|
338 |
# Gradio handlers
|
339 |
# -----------------------
|
340 |
|
341 |
+
def generate_response(message: str, history: List[List[str]], system_prompt: str,
|
342 |
+
temperature: float, top_p: float, top_k: int, max_new_tokens: int,
|
343 |
+
do_sample: bool, seed: Optional[int],
|
344 |
+
rose_enable: bool, rose_alpha: float, rose_score: Optional[float],
|
345 |
+
rose_tokens: str, rose_json: str,
|
346 |
+
show_thinking: bool = False,
|
347 |
+
reasoning_effort: str = "high") -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
"""
|
349 |
+
Generate response with proper CoT handling using Harmony format.
|
|
|
350 |
"""
|
351 |
try:
|
352 |
+
# Build message list
|
353 |
+
messages = [{"role": "system", "content": system_prompt or SYSTEM_DEF}]
|
|
|
354 |
|
355 |
+
# Add history
|
356 |
+
if history:
|
357 |
+
for turn in history:
|
358 |
+
if isinstance(turn, (list, tuple)) and len(turn) >= 2:
|
359 |
+
user_msg, assistant_msg = turn[0], turn[1]
|
360 |
+
if user_msg:
|
361 |
+
messages.append({"role": "user", "content": str(user_msg)})
|
362 |
+
if assistant_msg:
|
363 |
+
messages.append({"role": "assistant", "content": str(assistant_msg)})
|
364 |
|
365 |
+
# Add current message
|
366 |
+
messages.append({"role": "user", "content": str(message)})
|
367 |
+
|
368 |
+
# Create Harmony-formatted prompt
|
369 |
+
if HARMONY_AVAILABLE:
|
370 |
+
prompt = create_harmony_prompt(messages, reasoning_effort)
|
371 |
+
else:
|
372 |
+
# Fallback to tokenizer template
|
373 |
+
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
374 |
|
375 |
# Build Rose map if enabled
|
376 |
rose_map: Optional[Dict[str, float]] = None
|
|
|
398 |
pass
|
399 |
if not rose_map:
|
400 |
rose_map = None
|
401 |
+
|
402 |
# Generate with model
|
403 |
+
channels = zerogpu_generate(
|
404 |
prompt,
|
405 |
{
|
406 |
"do_sample": bool(do_sample),
|
|
|
415 |
int(seed) if seed is not None else None,
|
416 |
)
|
417 |
|
418 |
+
# Format response
|
419 |
if show_thinking:
|
420 |
+
# Show all channels
|
421 |
+
response = "## Chain of Thought:\n\n"
|
422 |
+
for channel, content in channels.items():
|
423 |
+
if channel != "final" and content:
|
424 |
+
response += f"### {channel.capitalize()} Channel:\n{content}\n\n"
|
425 |
+
response += f"### Final Response:\n{channels.get('final', 'No final response generated')}"
|
426 |
+
return response
|
427 |
else:
|
428 |
# Just show the final response
|
429 |
+
return channels.get("final", "No final response generated")
|
430 |
|
431 |
except Exception as e:
|
432 |
+
return f"[Error] {type(e).__name__}: {str(e)}"
|
|
|
|
|
|
|
433 |
|
434 |
# -----------------------
|
435 |
# UI
|
436 |
# -----------------------
|
437 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
gr.Markdown(
|
439 |
"""
|
440 |
+
# Mirel – Harmony Chain-of-Thought Inference
|
441 |
|
442 |
+
OSS-20B model using Harmony format with thinking channels.
|
443 |
+
The model thinks through problems in internal channels before providing a final response.
|
444 |
|
445 |
+
**Note:** Install `openai-harmony` for full Harmony support: `pip install openai-harmony`
|
446 |
"""
|
447 |
)
|
448 |
|
449 |
with gr.Row():
|
450 |
+
system_prompt = gr.Textbox(
|
451 |
+
label="System Prompt",
|
452 |
+
value=SYSTEM_DEF,
|
453 |
+
lines=2
|
454 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
456 |
with gr.Accordion("Generation Settings", open=False):
|
457 |
with gr.Row():
|
|
|
462 |
max_new = gr.Slider(16, 4096, value=MAX_DEF, step=16, label="Max new tokens")
|
463 |
do_sample = gr.Checkbox(value=True, label="Do sample")
|
464 |
seed = gr.Number(value=None, label="Seed (optional)", precision=0)
|
465 |
+
with gr.Row():
|
466 |
+
reasoning_effort = gr.Radio(
|
467 |
+
choices=["low", "medium", "high"],
|
468 |
+
value="high",
|
469 |
+
label="Reasoning Effort",
|
470 |
+
info="How much thinking the model should do"
|
471 |
+
)
|
472 |
+
show_thinking = gr.Checkbox(
|
473 |
+
value=False,
|
474 |
+
label="Show thinking channels",
|
475 |
+
info="Display all internal reasoning channels"
|
476 |
+
)
|
477 |
|
478 |
with gr.Accordion("Rose Guidance (Optional)", open=False):
|
479 |
gr.Markdown("Fine-tune generation with token biases")
|
|
|
495 |
# Chat interface
|
496 |
chat = gr.ChatInterface(
|
497 |
fn=generate_response,
|
|
|
498 |
additional_inputs=[
|
499 |
system_prompt, temperature, top_p, top_k, max_new,
|
500 |
do_sample, seed, rose_enable, rose_alpha, rose_score,
|
501 |
+
rose_tokens, rose_json, show_thinking, reasoning_effort
|
502 |
+
],
|
503 |
+
title="Chat with Mirel",
|
504 |
+
description="A chain-of-thought model using Harmony format",
|
505 |
+
examples=[
|
506 |
+
["Hello! Can you introduce yourself?"],
|
507 |
+
["What is the capital of France?"],
|
508 |
+
["Explain quantum computing in simple terms"],
|
509 |
+
["Solve: If a train travels 120 miles in 2 hours, what is its average speed?"],
|
510 |
],
|
|
|
|
|
511 |
cache_examples=False,
|
512 |
+
retry_btn="Retry",
|
513 |
+
undo_btn="Undo",
|
514 |
+
clear_btn="Clear",
|
515 |
)
|
516 |
|
517 |
gr.Markdown(
|
518 |
"""
|
519 |
---
|
520 |
+
### Configuration:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
- **Model**: Set `MODEL_ID` env var (default: openai/gpt-oss-20b)
|
522 |
+
- **Adapter**: Set `ADAPTER_ID` and optionally `ADAPTER_SUBFOLDER`
|
523 |
+
- **Auth**: Set `HF_TOKEN` in Space secrets for private model access
|
524 |
+
- **Harmony**: Install with `pip install openai-harmony` for proper channel support
|
525 |
|
526 |
+
The model uses Harmony format with thinking channels (`thinking`, `analysis`, `final`).
|
|
|
527 |
"""
|
528 |
)
|
529 |
|
530 |
if __name__ == "__main__":
|
531 |
+
demo.queue(max_size=8 if ZEROGPU else 32).launch(
|
|
|
|
|
|
|
532 |
server_name="0.0.0.0",
|
533 |
server_port=7860,
|
534 |
+
share=False
|
535 |
)
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ accelerate>=0.33.0
|
|
4 |
peft>=0.11.0
|
5 |
gradio>=5.38.0
|
6 |
torch>=2.4.0 # ZeroGPU-supported (2.3.x is NOT supported)
|
7 |
-
bitsandbytes>=0.43.1
|
|
|
|
4 |
peft>=0.11.0
|
5 |
gradio>=5.38.0
|
6 |
torch>=2.4.0 # ZeroGPU-supported (2.3.x is NOT supported)
|
7 |
+
bitsandbytes>=0.43.1
|
8 |
+
openai_harmony
|