Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,949 Bytes
e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b e9b0f2d 99d979b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
"""
Rose Beeper Model V4 Fixed - Inference Components
Extracted classes and utilities for model inference
"""
import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Dict, Any
from contextlib import nullcontext
import re
import inspect
# ============================== Environment Setup ==============================
torch.set_float32_matmul_precision("high")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# ============================== SDPA Helper ==============================
try:
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
from torch.nn.attention import SDPBackend as _SDPBackend
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
_sdpa_kernel = _sdpa_kernel_modern
except Exception:
try:
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
_SDPBackend = None
_sdpa_kernel = _sdpa_kernel_legacy
except Exception:
_SDPA_SIG = None
_SDPBackend = None
_sdpa_kernel = None
def sdpa_ctx_prefer_flash():
"""Bias SDPA toward FlashAttention when available; no-op if unknown."""
if _sdpa_kernel is None or _SDPA_SIG is None:
return nullcontext()
params = {p.name for p in _SDPA_SIG.parameters.values()}
try:
if "backends" in params and _SDPBackend is not None:
return _sdpa_kernel(backends=[
_SDPBackend.FLASH_ATTENTION,
_SDPBackend.EFFICIENT_ATTENTION,
_SDPBackend.MATH
])
if "backend" in params and _SDPBackend is not None:
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True)
except Exception:
pass
return nullcontext()
# ============================== Model Components ==============================
class CausalSelfAttention(nn.Module):
"""Multi-head causal self-attention with optional FlashAttention."""
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
super().__init__()
assert dim % n_heads == 0
self.nh = n_heads
self.hd = dim // n_heads
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
self.attn_dropout = attn_dropout
def forward(self, x):
B, T, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
if x.is_cuda:
with sdpa_ctx_prefer_flash():
y = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.attn_dropout if self.training else 0.0,
)
else:
scale = 1.0 / math.sqrt(self.hd)
att = (q @ k.transpose(-2, -1)) * scale
mask = torch.full((1, 1, T, T), float("-inf"), device=x.device)
mask = torch.triu(mask, diagonal=1)
att = (att + mask).softmax(dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(y)
class MLP(nn.Module):
"""Feed-forward MLP block with GELU activation."""
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
super().__init__()
hidden = int(dim * mlp_ratio)
self.fc1 = nn.Linear(dim, hidden)
self.fc2 = nn.Linear(hidden, dim)
self.drop = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = F.gelu(x, approximate="tanh")
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class BeeperRoseGPT(nn.Module):
"""Main Rose Beeper GPT model with pentachora banks."""
def __init__(self, cfg: dict):
super().__init__()
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
RD, AD, CKPT = cfg["resid_dropout"], cfg["dropout"], cfg["grad_checkpoint"]
self.vocab_size, self.context = V, Ctx
self.token_emb = nn.Embedding(V, D)
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
self.drop = nn.Dropout(RD)
self.blocks = nn.ModuleList([
nn.ModuleDict({
"norm1": nn.LayerNorm(D),
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
"norm2": nn.LayerNorm(D),
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
}) for _ in range(L)
])
self.norm = nn.LayerNorm(D)
self.lm_head = nn.Linear(D, V, bias=False)
self.lm_head.weight = self.token_emb.weight
# Rose projection + anchors
self.rose_proj = nn.Linear(D, D, bias=False)
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
# Multi-level pentachora; lazily initialized
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
self.penta_coarse = None
self.penta_medium = None
self.penta_fine = None
self.apply(self._init)
self.grad_checkpoint = CKPT
@staticmethod
def _init(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device):
"""Initialize three pentachora banks."""
if self.pent_inited.item() == 1:
return
def bank(C):
pts = []
for _ in range(int(C)):
A = torch.randn(5, dim, device=device)
A = F.normalize(A - A.mean(dim=0, keepdim=True), dim=-1)
pts.append(A)
return nn.Parameter(torch.stack(pts, dim=0))
self.penta_coarse = bank(coarse_C)
self.penta_medium = bank(medium_C)
self.penta_fine = bank(fine_C)
self.pent_inited.fill_(1)
def _block_forward(self, blk, x):
x = x + blk["attn"](blk["norm1"](x))
x = x + blk["mlp"](blk["norm2"](x))
return x
def backbone(self, idx):
B, T = idx.shape
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
x = self.drop(x)
if self.grad_checkpoint and self.training:
from torch.utils.checkpoint import checkpoint
for blk in self.blocks:
x = checkpoint(lambda _x: self._block_forward(blk, _x), x)
else:
for blk in self.blocks:
x = self._block_forward(blk, x)
return self.norm(x)
def forward(self, idx):
h = self.backbone(idx)
return self.lm_head(h)
def hidden_states(self, idx):
return self.backbone(idx)
def rose_hidden_pool(self, h: torch.Tensor, mode="mean"):
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
# ============================== IO Utilities ==============================
class BeeperIO:
"""Utilities for loading and saving model checkpoints."""
@staticmethod
def clean_state(sd: dict):
out = {}
for k, v in sd.items():
if k.startswith("_orig_mod."):
k = k[10:]
if k.startswith("module."):
k = k[7:]
out[k] = v
return out
@staticmethod
def load_into_model(model: nn.Module, path: str, map_location="cpu", strict: bool = False):
"""Load weights from .pt or .safetensors file."""
ext = os.path.splitext(path)[1].lower()
if ext == ".safetensors":
from safetensors.torch import load_file as load_safetensors
sd = load_safetensors(path, device="cpu")
else:
raw = torch.load(path, map_location="cpu")
sd = raw["model"] if isinstance(raw, dict) and "model" in raw else raw
sd = BeeperIO.clean_state(sd)
result = model.load_state_dict(sd, strict=strict)
return result.missing_keys, result.unexpected_keys
# ============================== Generation ==============================
def _detok(text: str) -> str:
"""Clean up tokenization artifacts."""
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
return text
@torch.no_grad()
def generate(model: BeeperRoseGPT,
tok: "Tokenizer",
cfg: dict,
prompt: str,
max_new_tokens: int = 120,
temperature: float = None,
top_k: int = None,
top_p: float = None,
repetition_penalty: float = None,
presence_penalty: float = None,
frequency_penalty: float = None,
device: Optional[torch.device] = None,
detokenize: bool = True) -> str:
"""
Generate text from the model with various sampling strategies.
Args:
model: The BeeperRoseGPT model
tok: Tokenizer instance
cfg: Configuration dictionary
prompt: Input prompt string
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature
top_k: Top-k sampling parameter
top_p: Top-p (nucleus) sampling parameter
repetition_penalty: Penalty for repeated tokens
presence_penalty: Penalty for token presence
frequency_penalty: Penalty based on token frequency
device: Device to run on
detokenize: Whether to clean up tokenization
Returns:
Generated text string
"""
# Use defaults from config if not specified
temperature = cfg["temperature"] if temperature is None else temperature
top_k = cfg["top_k"] if top_k is None else top_k
top_p = cfg["top_p"] if top_p is None else top_p
repetition_penalty = cfg["repetition_penalty"] if repetition_penalty is None else repetition_penalty
presence_penalty = cfg["presence_penalty"] if presence_penalty is None else presence_penalty
frequency_penalty = cfg["frequency_penalty"] if frequency_penalty is None else frequency_penalty
device = device or next(model.parameters()).device
model.eval()
# Encode prompt
ids = tok.encode(prompt).ids
x = torch.tensor([ids], dtype=torch.long, device=device)
counts = torch.zeros(cfg["vocab_size"], dtype=torch.int32, device=device)
# Track token frequencies
for t in ids:
if 0 <= t < cfg["vocab_size"]:
counts[t] += 1
# Generate tokens
for _ in range(max_new_tokens):
# Get logits for next token
logits = model(x[:, -cfg["context"]:])
logits = logits[:, -1, :]
# Apply repetition penalty
if repetition_penalty and repetition_penalty != 1.0:
mask = counts > 0
if mask.any():
pos = logits[:, mask] > 0
logits[:, mask][pos] /= repetition_penalty
logits[:, mask][~pos] *= repetition_penalty
# Apply presence and frequency penalties
if presence_penalty or frequency_penalty:
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
logits = logits - pen.unsqueeze(0)
# Temperature scaling
logits = logits / max(1e-8, temperature)
# Top-k filtering
if top_k and top_k > 0:
k = min(top_k, logits.size(-1))
v, ix = torch.topk(logits, k, dim=-1)
filt = torch.full_like(logits, float("-inf"))
logits = filt.scatter_(-1, ix, v)
# Top-p (nucleus) filtering
if top_p and top_p < 1.0:
sl, si = torch.sort(logits, descending=True)
ps = F.softmax(sl, dim=-1)
cdf = torch.cumsum(ps, dim=-1)
cutoff = (cdf > top_p).float().argmax(dim=-1)
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1)
sl = sl.masked_fill(mask, float("-inf"))
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)
# Sample next token
probs = F.softmax(logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1)
x = torch.cat([x, next_id], dim=1)
counts[next_id.item()] += 1
# Decode output
out = tok.decode(x[0].tolist())
return _detok(out) if detokenize else out
# ============================== Default Configuration ==============================
def get_default_config():
"""Return the default configuration for the Rose Beeper model."""
return {
"name": "Rose-Beeper",
"context": 512,
"vocab_size": 8192,
"dim": 512,
"n_layers": 6,
"n_heads": 8,
"mlp_ratio": 4.0,
"dropout": 0.0,
"resid_dropout": 0.1,
"grad_checkpoint": False,
# Generation parameters
"temperature": 0.9,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.10,
"presence_penalty": 0.6,
"frequency_penalty": 0.0,
# Capoera settings
"capoera": {
"enable": True,
"topic_bins": 512,
"mood_bins": 7,
}
} |