Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,759 Bytes
c84b8a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
"""
Rose Beeper Model - Inference Example
Simple script showing how to load and use the model for text generation
"""
import torch
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
# Import the extracted components (assuming they're in a module called 'beeper_inference')
# from beeper_inference import BeeperRoseGPT, BeeperIO, generate, get_default_config
def load_model_for_inference(
checkpoint_path: str = None,
tokenizer_path: str = "beeper.tokenizer.json",
hf_repo: str = "AbstractPhil/beeper-rose-v5",
device: str = "cuda"
):
"""
Load the Rose Beeper model for inference.
Args:
checkpoint_path: Path to local checkpoint file (.pt or .safetensors)
tokenizer_path: Path to tokenizer file
hf_repo: HuggingFace repository to download from if no local checkpoint
device: Device to load model on ("cuda" or "cpu")
Returns:
Tuple of (model, tokenizer, config)
"""
# Get default configuration
config = get_default_config()
# Set device
device = torch.device(device if torch.cuda.is_available() else "cpu")
# Initialize model
model = BeeperRoseGPT(config).to(device)
# Initialize pentachora banks
# These are the default sizes from the training configuration
cap_cfg = config.get("capoera", {})
coarse_C = 20 # Approximate number of alive datasets
model.ensure_pentachora(
coarse_C=coarse_C,
medium_C=int(cap_cfg.get("topic_bins", 512)),
fine_C=int(cap_cfg.get("mood_bins", 7)),
dim=config["dim"],
device=device
)
# Load checkpoint
loaded = False
# Try loading from local path
if checkpoint_path and os.path.exists(checkpoint_path):
print(f"Loading model from: {checkpoint_path}")
missing, unexpected = BeeperIO.load_into_model(
model, checkpoint_path, map_location="cpu", strict=False
)
print(f"Loaded | missing={len(missing)} unexpected={len(unexpected)}")
loaded = True
# Try downloading from HuggingFace
if not loaded and hf_repo:
try:
print(f"Downloading model from HuggingFace: {hf_repo}")
path = hf_hub_download(repo_id=hf_repo, filename="beeper_final.safetensors")
missing, unexpected = BeeperIO.load_into_model(
model, path, map_location="cpu", strict=False
)
print(f"Loaded | missing={len(missing)} unexpected={len(unexpected)}")
loaded = True
except Exception as e:
print(f"Failed to download from HuggingFace: {e}")
if not loaded:
print("WARNING: No weights loaded, using random initialization!")
# Load tokenizer
if os.path.exists(tokenizer_path):
tok = Tokenizer.from_file(tokenizer_path)
print(f"Loaded tokenizer from: {tokenizer_path}")
else:
# Try downloading tokenizer from HF
try:
tok_path = hf_hub_download(repo_id=hf_repo, filename="tokenizer.json")
tok = Tokenizer.from_file(tok_path)
print(f"Downloaded tokenizer from HuggingFace")
except Exception as e:
raise RuntimeError(f"Could not load tokenizer: {e}")
# Set model to eval mode
model.eval()
return model, tok, config
def interactive_generation(model, tokenizer, config, device="cuda"):
"""
Interactive text generation loop.
Args:
model: The loaded BeeperRoseGPT model
tokenizer: The tokenizer
config: Model configuration
device: Device to run on
"""
device = torch.device(device if torch.cuda.is_available() else "cpu")
model = model.to(device)
print("\n=== Rose Beeper Interactive Generation ===")
print("Enter your prompt (or 'quit' to exit)")
print("Commands: /temp <value>, /top_k <value>, /top_p <value>, /max <tokens>")
print("-" * 50)
# Generation settings (can be modified)
settings = {
"max_new_tokens": 100,
"temperature": config["temperature"],
"top_k": config["top_k"],
"top_p": config["top_p"],
"repetition_penalty": config["repetition_penalty"],
"presence_penalty": config["presence_penalty"],
"frequency_penalty": config["frequency_penalty"],
}
while True:
prompt = input("\nPrompt: ").strip()
if prompt.lower() == 'quit':
break
# Handle commands
if prompt.startswith('/'):
parts = prompt.split()
cmd = parts[0].lower()
if cmd == '/temp' and len(parts) > 1:
settings["temperature"] = float(parts[1])
print(f"Temperature set to {settings['temperature']}")
continue
elif cmd == '/top_k' and len(parts) > 1:
settings["top_k"] = int(parts[1])
print(f"Top-k set to {settings['top_k']}")
continue
elif cmd == '/top_p' and len(parts) > 1:
settings["top_p"] = float(parts[1])
print(f"Top-p set to {settings['top_p']}")
continue
elif cmd == '/max' and len(parts) > 1:
settings["max_new_tokens"] = int(parts[1])
print(f"Max tokens set to {settings['max_new_tokens']}")
continue
else:
print("Unknown command")
continue
if not prompt:
continue
# Generate text
print("\nGenerating...")
output = generate(
model=model,
tok=tokenizer,
cfg=config,
prompt=prompt,
device=device,
**settings
)
print("\nOutput:", output)
print("-" * 50)
def batch_generation_example(model, tokenizer, config, device="cuda"):
"""
Example of batch generation with different settings.
"""
device = torch.device(device if torch.cuda.is_available() else "cpu")
model = model.to(device)
prompts = [
"The robot went to school and",
"Once upon a time in a magical forest",
"The scientist discovered that",
"In the year 2050, humanity",
"The philosophy of mind suggests",
]
print("\n=== Batch Generation Examples ===\n")
for prompt in prompts:
print(f"Prompt: {prompt}")
# Generate with different temperatures
for temp in [0.5, 0.9, 1.2]:
output = generate(
model=model,
tok=tokenizer,
cfg=config,
prompt=prompt,
max_new_tokens=50,
temperature=temp,
device=device
)
print(f" Temp {temp}: {output}")
print("-" * 50)
# Main execution example
if __name__ == "__main__":
import os
# Load model
model, tokenizer, config = load_model_for_inference(
checkpoint_path=None, # Will download from HF
hf_repo="AbstractPhil/beeper-rose-v5",
device="cuda"
)
# Example: Single generation
print("\n=== Single Generation Example ===")
output = generate(
model=model,
tok=tokenizer,
cfg=config,
prompt="The meaning of life is",
max_new_tokens=100,
temperature=0.9,
device="cuda"
)
print(f"Output: {output}")
# Example: Batch generation with different settings
# batch_generation_example(model, tokenizer, config)
# Example: Interactive generation
# interactive_generation(model, tokenizer, config) |