Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,522 Bytes
e9b0f2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
"""
beeper_model.py - Core model module for Beeper
Extracted from the training code for use in inference/apps
"""
import os
import re
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
from safetensors.torch import load_file as load_safetensors
# =========================================================================================
# Model Components
# =========================================================================================
class CausalSelfAttention(nn.Module):
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
super().__init__()
assert dim % n_heads == 0
self.nh = n_heads
self.hd = dim // n_heads
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
self.attn_dropout = attn_dropout
def forward(self, x):
B, T, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
# Use scaled_dot_product_attention when available
y = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.attn_dropout if self.training else 0.0,
)
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(y)
class MLP(nn.Module):
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
super().__init__()
hidden = int(dim * mlp_ratio)
self.fc1 = nn.Linear(dim, hidden)
self.fc2 = nn.Linear(hidden, dim)
self.drop = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = F.gelu(x, approximate="tanh")
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class BeeperRoseGPT(nn.Module):
def __init__(self, cfg: dict):
super().__init__()
V = cfg.get("vocab_size", 8192)
D = cfg.get("dim", 512)
Ctx = cfg.get("context", 512)
H = cfg.get("n_heads", 8)
L = cfg.get("n_layers", 6)
MR = cfg.get("mlp_ratio", 4.0)
RD = cfg.get("resid_dropout", 0.1)
AD = cfg.get("dropout", 0.0)
self.vocab_size = V
self.context = Ctx
# Core transformer components
self.token_emb = nn.Embedding(V, D)
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
self.drop = nn.Dropout(RD)
self.blocks = nn.ModuleList([
nn.ModuleDict({
"norm1": nn.LayerNorm(D),
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
"norm2": nn.LayerNorm(D),
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
}) for _ in range(L)
])
self.norm = nn.LayerNorm(D)
self.lm_head = nn.Linear(D, V, bias=False)
# Weight tying
self.lm_head.weight = self.token_emb.weight
# Rose components (for compatibility, may not be used in inference)
self.rose_proj = nn.Linear(D, D, bias=False)
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
# Pentachora placeholders (not needed for inference but for weight compatibility)
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
self.penta_coarse = None
self.penta_medium = None
self.penta_fine = None
self.apply(self._init)
self.grad_checkpoint = False
@staticmethod
def _init(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
def _block_forward(self, blk, x):
x = x + blk["attn"](blk["norm1"](x))
x = x + blk["mlp"](blk["norm2"](x))
return x
def backbone(self, idx):
B, T = idx.shape
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
x = self.drop(x)
for blk in self.blocks:
x = self._block_forward(blk, x)
return self.norm(x)
def forward(self, idx):
h = self.backbone(idx)
return self.lm_head(h)
def hidden_states(self, idx):
return self.backbone(idx)
def load_state_dict(self, state_dict, strict=False):
"""Custom load that handles pentachora bank initialization gracefully"""
# Clean state dict keys
cleaned = {}
for k, v in state_dict.items():
if k.startswith("_orig_mod."):
k = k[10:]
if k.startswith("module."):
k = k[7:]
cleaned[k] = v
# Initialize pentachora if present in checkpoint
if "penta_coarse" in cleaned:
self.penta_coarse = nn.Parameter(cleaned["penta_coarse"])
if "penta_medium" in cleaned:
self.penta_medium = nn.Parameter(cleaned["penta_medium"])
if "penta_fine" in cleaned:
self.penta_fine = nn.Parameter(cleaned["penta_fine"])
return super().load_state_dict(cleaned, strict=strict)
# =========================================================================================
# Generation
# =========================================================================================
def _detokenize(text: str) -> str:
"""Clean up tokenization artifacts"""
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
return text
@torch.no_grad()
def generate(
model: BeeperRoseGPT,
tok, # Tokenizer
cfg: dict,
prompt: str,
max_new_tokens: int = 120,
temperature: float = None,
top_k: int = None,
top_p: float = None,
repetition_penalty: float = None,
presence_penalty: float = None,
frequency_penalty: float = None,
device: Optional[torch.device] = None,
detokenize: bool = True
) -> str:
"""
Generate text from Beeper model with various sampling strategies.
"""
# Use defaults from config if not specified
temperature = temperature if temperature is not None else cfg.get("temperature", 0.9)
top_k = top_k if top_k is not None else cfg.get("top_k", 40)
top_p = top_p if top_p is not None else cfg.get("top_p", 0.9)
repetition_penalty = repetition_penalty if repetition_penalty is not None else cfg.get("repetition_penalty", 1.1)
presence_penalty = presence_penalty if presence_penalty is not None else cfg.get("presence_penalty", 0.6)
frequency_penalty = frequency_penalty if frequency_penalty is not None else cfg.get("frequency_penalty", 0.0)
device = device or next(model.parameters()).device
model.eval()
# Encode prompt
ids = tok.encode(prompt).ids
x = torch.tensor([ids], dtype=torch.long, device=device)
# Track token frequencies for penalties
vocab_size = cfg.get("vocab_size", 8192)
counts = torch.zeros(vocab_size, dtype=torch.int32, device=device)
for t in ids:
if 0 <= t < vocab_size:
counts[t] += 1
# Generate tokens
for _ in range(max_new_tokens):
# Get logits for next token
context_window = cfg.get("context", 512)
logits = model(x[:, -context_window:])
logits = logits[:, -1, :]
# Apply repetition penalty
if repetition_penalty and repetition_penalty != 1.0:
mask = counts > 0
if mask.any():
pos = logits[:, mask] > 0
logits[:, mask][pos] /= repetition_penalty
logits[:, mask][~pos] *= repetition_penalty
# Apply presence and frequency penalties
if presence_penalty or frequency_penalty:
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
logits = logits - pen.unsqueeze(0)
# Temperature scaling
logits = logits / max(1e-8, temperature)
# Top-k filtering
if top_k and top_k > 0:
k = min(top_k, logits.size(-1))
v, ix = torch.topk(logits, k, dim=-1)
filt = torch.full_like(logits, float("-inf"))
logits = filt.scatter_(-1, ix, v)
# Top-p (nucleus) filtering
if top_p and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
probs = F.softmax(sorted_logits, dim=-1)
cumulative_probs = torch.cumsum(probs, dim=-1)
# Find cutoff
cutoff_idx = (cumulative_probs > top_p).float().argmax(dim=-1)
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff_idx.unsqueeze(-1)
sorted_logits = sorted_logits.masked_fill(mask, float("-inf"))
logits = torch.full_like(logits, float("-inf")).scatter(-1, sorted_indices, sorted_logits)
# Sample next token
probs = F.softmax(logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1)
# Append to sequence
x = torch.cat([x, next_id], dim=1)
counts[next_id.item()] += 1
# Decode output
output = tok.decode(x[0].tolist())
return _detokenize(output) if detokenize else output |