meet-beeper / beeper_model.py
AbstractPhil's picture
Create beeper_model.py
e9b0f2d verified
raw
history blame
9.52 kB
"""
beeper_model.py - Core model module for Beeper
Extracted from the training code for use in inference/apps
"""
import os
import re
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
from safetensors.torch import load_file as load_safetensors
# =========================================================================================
# Model Components
# =========================================================================================
class CausalSelfAttention(nn.Module):
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
super().__init__()
assert dim % n_heads == 0
self.nh = n_heads
self.hd = dim // n_heads
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
self.attn_dropout = attn_dropout
def forward(self, x):
B, T, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
# Use scaled_dot_product_attention when available
y = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.attn_dropout if self.training else 0.0,
)
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(y)
class MLP(nn.Module):
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
super().__init__()
hidden = int(dim * mlp_ratio)
self.fc1 = nn.Linear(dim, hidden)
self.fc2 = nn.Linear(hidden, dim)
self.drop = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = F.gelu(x, approximate="tanh")
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class BeeperRoseGPT(nn.Module):
def __init__(self, cfg: dict):
super().__init__()
V = cfg.get("vocab_size", 8192)
D = cfg.get("dim", 512)
Ctx = cfg.get("context", 512)
H = cfg.get("n_heads", 8)
L = cfg.get("n_layers", 6)
MR = cfg.get("mlp_ratio", 4.0)
RD = cfg.get("resid_dropout", 0.1)
AD = cfg.get("dropout", 0.0)
self.vocab_size = V
self.context = Ctx
# Core transformer components
self.token_emb = nn.Embedding(V, D)
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
self.drop = nn.Dropout(RD)
self.blocks = nn.ModuleList([
nn.ModuleDict({
"norm1": nn.LayerNorm(D),
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
"norm2": nn.LayerNorm(D),
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
}) for _ in range(L)
])
self.norm = nn.LayerNorm(D)
self.lm_head = nn.Linear(D, V, bias=False)
# Weight tying
self.lm_head.weight = self.token_emb.weight
# Rose components (for compatibility, may not be used in inference)
self.rose_proj = nn.Linear(D, D, bias=False)
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
# Pentachora placeholders (not needed for inference but for weight compatibility)
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
self.penta_coarse = None
self.penta_medium = None
self.penta_fine = None
self.apply(self._init)
self.grad_checkpoint = False
@staticmethod
def _init(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
def _block_forward(self, blk, x):
x = x + blk["attn"](blk["norm1"](x))
x = x + blk["mlp"](blk["norm2"](x))
return x
def backbone(self, idx):
B, T = idx.shape
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
x = self.drop(x)
for blk in self.blocks:
x = self._block_forward(blk, x)
return self.norm(x)
def forward(self, idx):
h = self.backbone(idx)
return self.lm_head(h)
def hidden_states(self, idx):
return self.backbone(idx)
def load_state_dict(self, state_dict, strict=False):
"""Custom load that handles pentachora bank initialization gracefully"""
# Clean state dict keys
cleaned = {}
for k, v in state_dict.items():
if k.startswith("_orig_mod."):
k = k[10:]
if k.startswith("module."):
k = k[7:]
cleaned[k] = v
# Initialize pentachora if present in checkpoint
if "penta_coarse" in cleaned:
self.penta_coarse = nn.Parameter(cleaned["penta_coarse"])
if "penta_medium" in cleaned:
self.penta_medium = nn.Parameter(cleaned["penta_medium"])
if "penta_fine" in cleaned:
self.penta_fine = nn.Parameter(cleaned["penta_fine"])
return super().load_state_dict(cleaned, strict=strict)
# =========================================================================================
# Generation
# =========================================================================================
def _detokenize(text: str) -> str:
"""Clean up tokenization artifacts"""
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
return text
@torch.no_grad()
def generate(
model: BeeperRoseGPT,
tok, # Tokenizer
cfg: dict,
prompt: str,
max_new_tokens: int = 120,
temperature: float = None,
top_k: int = None,
top_p: float = None,
repetition_penalty: float = None,
presence_penalty: float = None,
frequency_penalty: float = None,
device: Optional[torch.device] = None,
detokenize: bool = True
) -> str:
"""
Generate text from Beeper model with various sampling strategies.
"""
# Use defaults from config if not specified
temperature = temperature if temperature is not None else cfg.get("temperature", 0.9)
top_k = top_k if top_k is not None else cfg.get("top_k", 40)
top_p = top_p if top_p is not None else cfg.get("top_p", 0.9)
repetition_penalty = repetition_penalty if repetition_penalty is not None else cfg.get("repetition_penalty", 1.1)
presence_penalty = presence_penalty if presence_penalty is not None else cfg.get("presence_penalty", 0.6)
frequency_penalty = frequency_penalty if frequency_penalty is not None else cfg.get("frequency_penalty", 0.0)
device = device or next(model.parameters()).device
model.eval()
# Encode prompt
ids = tok.encode(prompt).ids
x = torch.tensor([ids], dtype=torch.long, device=device)
# Track token frequencies for penalties
vocab_size = cfg.get("vocab_size", 8192)
counts = torch.zeros(vocab_size, dtype=torch.int32, device=device)
for t in ids:
if 0 <= t < vocab_size:
counts[t] += 1
# Generate tokens
for _ in range(max_new_tokens):
# Get logits for next token
context_window = cfg.get("context", 512)
logits = model(x[:, -context_window:])
logits = logits[:, -1, :]
# Apply repetition penalty
if repetition_penalty and repetition_penalty != 1.0:
mask = counts > 0
if mask.any():
pos = logits[:, mask] > 0
logits[:, mask][pos] /= repetition_penalty
logits[:, mask][~pos] *= repetition_penalty
# Apply presence and frequency penalties
if presence_penalty or frequency_penalty:
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
logits = logits - pen.unsqueeze(0)
# Temperature scaling
logits = logits / max(1e-8, temperature)
# Top-k filtering
if top_k and top_k > 0:
k = min(top_k, logits.size(-1))
v, ix = torch.topk(logits, k, dim=-1)
filt = torch.full_like(logits, float("-inf"))
logits = filt.scatter_(-1, ix, v)
# Top-p (nucleus) filtering
if top_p and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
probs = F.softmax(sorted_logits, dim=-1)
cumulative_probs = torch.cumsum(probs, dim=-1)
# Find cutoff
cutoff_idx = (cumulative_probs > top_p).float().argmax(dim=-1)
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff_idx.unsqueeze(-1)
sorted_logits = sorted_logits.masked_fill(mask, float("-inf"))
logits = torch.full_like(logits, float("-inf")).scatter(-1, sorted_indices, sorted_logits)
# Sample next token
probs = F.softmax(logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1)
# Append to sequence
x = torch.cat([x, next_id], dim=1)
counts[next_id.item()] += 1
# Decode output
output = tok.decode(x[0].tolist())
return _detokenize(output) if detokenize else output