Spaces:
Running
on
Zero
Running
on
Zero
""" | |
beeper_model.py - Core model module for Beeper | |
Extracted from the training code for use in inference/apps | |
""" | |
import os | |
import re | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import Optional | |
from safetensors.torch import load_file as load_safetensors | |
# ========================================================================================= | |
# Model Components | |
# ========================================================================================= | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0): | |
super().__init__() | |
assert dim % n_heads == 0 | |
self.nh = n_heads | |
self.hd = dim // n_heads | |
self.qkv = nn.Linear(dim, 3 * dim, bias=False) | |
self.proj = nn.Linear(dim, dim, bias=False) | |
self.attn_dropout = attn_dropout | |
def forward(self, x): | |
B, T, C = x.shape | |
qkv = self.qkv(x) | |
q, k, v = qkv.chunk(3, dim=-1) | |
q = q.view(B, T, self.nh, self.hd).transpose(1, 2) | |
k = k.view(B, T, self.nh, self.hd).transpose(1, 2) | |
v = v.view(B, T, self.nh, self.hd).transpose(1, 2) | |
# Use scaled_dot_product_attention when available | |
y = F.scaled_dot_product_attention( | |
q, k, v, | |
is_causal=True, | |
dropout_p=self.attn_dropout if self.training else 0.0, | |
) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) | |
return self.proj(y) | |
class MLP(nn.Module): | |
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1): | |
super().__init__() | |
hidden = int(dim * mlp_ratio) | |
self.fc1 = nn.Linear(dim, hidden) | |
self.fc2 = nn.Linear(hidden, dim) | |
self.drop = nn.Dropout(dropout) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = F.gelu(x, approximate="tanh") | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class BeeperRoseGPT(nn.Module): | |
def __init__(self, cfg: dict): | |
super().__init__() | |
V = cfg.get("vocab_size", 8192) | |
D = cfg.get("dim", 512) | |
Ctx = cfg.get("context", 512) | |
H = cfg.get("n_heads", 8) | |
L = cfg.get("n_layers", 6) | |
MR = cfg.get("mlp_ratio", 4.0) | |
RD = cfg.get("resid_dropout", 0.1) | |
AD = cfg.get("dropout", 0.0) | |
self.vocab_size = V | |
self.context = Ctx | |
# Core transformer components | |
self.token_emb = nn.Embedding(V, D) | |
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D)) | |
self.drop = nn.Dropout(RD) | |
self.blocks = nn.ModuleList([ | |
nn.ModuleDict({ | |
"norm1": nn.LayerNorm(D), | |
"attn": CausalSelfAttention(D, H, attn_dropout=AD), | |
"norm2": nn.LayerNorm(D), | |
"mlp": MLP(D, mlp_ratio=MR, dropout=RD), | |
}) for _ in range(L) | |
]) | |
self.norm = nn.LayerNorm(D) | |
self.lm_head = nn.Linear(D, V, bias=False) | |
# Weight tying | |
self.lm_head.weight = self.token_emb.weight | |
# Rose components (for compatibility, may not be used in inference) | |
self.rose_proj = nn.Linear(D, D, bias=False) | |
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5)) | |
# Pentachora placeholders (not needed for inference but for weight compatibility) | |
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False) | |
self.penta_coarse = None | |
self.penta_medium = None | |
self.penta_fine = None | |
self.apply(self._init) | |
self.grad_checkpoint = False | |
def _init(m): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, mean=0.0, std=0.02) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
elif isinstance(m, nn.Embedding): | |
nn.init.normal_(m.weight, mean=0.0, std=0.02) | |
def _block_forward(self, blk, x): | |
x = x + blk["attn"](blk["norm1"](x)) | |
x = x + blk["mlp"](blk["norm2"](x)) | |
return x | |
def backbone(self, idx): | |
B, T = idx.shape | |
x = self.token_emb(idx) + self.pos_emb[:, :T, :] | |
x = self.drop(x) | |
for blk in self.blocks: | |
x = self._block_forward(blk, x) | |
return self.norm(x) | |
def forward(self, idx): | |
h = self.backbone(idx) | |
return self.lm_head(h) | |
def hidden_states(self, idx): | |
return self.backbone(idx) | |
def load_state_dict(self, state_dict, strict=False): | |
"""Custom load that handles pentachora bank initialization gracefully""" | |
# Clean state dict keys | |
cleaned = {} | |
for k, v in state_dict.items(): | |
if k.startswith("_orig_mod."): | |
k = k[10:] | |
if k.startswith("module."): | |
k = k[7:] | |
cleaned[k] = v | |
# Initialize pentachora if present in checkpoint | |
if "penta_coarse" in cleaned: | |
self.penta_coarse = nn.Parameter(cleaned["penta_coarse"]) | |
if "penta_medium" in cleaned: | |
self.penta_medium = nn.Parameter(cleaned["penta_medium"]) | |
if "penta_fine" in cleaned: | |
self.penta_fine = nn.Parameter(cleaned["penta_fine"]) | |
return super().load_state_dict(cleaned, strict=strict) | |
# ========================================================================================= | |
# Generation | |
# ========================================================================================= | |
def _detokenize(text: str) -> str: | |
"""Clean up tokenization artifacts""" | |
text = re.sub(r"\s+([,.;:!?%])", r"\1", text) | |
text = re.sub(r"\s+([\)\]\}])", r"\1", text) | |
text = re.sub(r"([\(\[\{])\s+", r"\1", text) | |
return text | |
def generate( | |
model: BeeperRoseGPT, | |
tok, # Tokenizer | |
cfg: dict, | |
prompt: str, | |
max_new_tokens: int = 120, | |
temperature: float = None, | |
top_k: int = None, | |
top_p: float = None, | |
repetition_penalty: float = None, | |
presence_penalty: float = None, | |
frequency_penalty: float = None, | |
device: Optional[torch.device] = None, | |
detokenize: bool = True | |
) -> str: | |
""" | |
Generate text from Beeper model with various sampling strategies. | |
""" | |
# Use defaults from config if not specified | |
temperature = temperature if temperature is not None else cfg.get("temperature", 0.9) | |
top_k = top_k if top_k is not None else cfg.get("top_k", 40) | |
top_p = top_p if top_p is not None else cfg.get("top_p", 0.9) | |
repetition_penalty = repetition_penalty if repetition_penalty is not None else cfg.get("repetition_penalty", 1.1) | |
presence_penalty = presence_penalty if presence_penalty is not None else cfg.get("presence_penalty", 0.6) | |
frequency_penalty = frequency_penalty if frequency_penalty is not None else cfg.get("frequency_penalty", 0.0) | |
device = device or next(model.parameters()).device | |
model.eval() | |
# Encode prompt | |
ids = tok.encode(prompt).ids | |
x = torch.tensor([ids], dtype=torch.long, device=device) | |
# Track token frequencies for penalties | |
vocab_size = cfg.get("vocab_size", 8192) | |
counts = torch.zeros(vocab_size, dtype=torch.int32, device=device) | |
for t in ids: | |
if 0 <= t < vocab_size: | |
counts[t] += 1 | |
# Generate tokens | |
for _ in range(max_new_tokens): | |
# Get logits for next token | |
context_window = cfg.get("context", 512) | |
logits = model(x[:, -context_window:]) | |
logits = logits[:, -1, :] | |
# Apply repetition penalty | |
if repetition_penalty and repetition_penalty != 1.0: | |
mask = counts > 0 | |
if mask.any(): | |
pos = logits[:, mask] > 0 | |
logits[:, mask][pos] /= repetition_penalty | |
logits[:, mask][~pos] *= repetition_penalty | |
# Apply presence and frequency penalties | |
if presence_penalty or frequency_penalty: | |
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0) | |
logits = logits - pen.unsqueeze(0) | |
# Temperature scaling | |
logits = logits / max(1e-8, temperature) | |
# Top-k filtering | |
if top_k and top_k > 0: | |
k = min(top_k, logits.size(-1)) | |
v, ix = torch.topk(logits, k, dim=-1) | |
filt = torch.full_like(logits, float("-inf")) | |
logits = filt.scatter_(-1, ix, v) | |
# Top-p (nucleus) filtering | |
if top_p and top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
probs = F.softmax(sorted_logits, dim=-1) | |
cumulative_probs = torch.cumsum(probs, dim=-1) | |
# Find cutoff | |
cutoff_idx = (cumulative_probs > top_p).float().argmax(dim=-1) | |
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff_idx.unsqueeze(-1) | |
sorted_logits = sorted_logits.masked_fill(mask, float("-inf")) | |
logits = torch.full_like(logits, float("-inf")).scatter(-1, sorted_indices, sorted_logits) | |
# Sample next token | |
probs = F.softmax(logits, dim=-1) | |
next_id = torch.multinomial(probs, num_samples=1) | |
# Append to sequence | |
x = torch.cat([x, next_id], dim=1) | |
counts[next_id.item()] += 1 | |
# Decode output | |
output = tok.decode(x[0].tolist()) | |
return _detokenize(output) if detokenize else output |