Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,76 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
temperature=temperature,
|
|
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
additional_inputs=[
|
49 |
-
gr.
|
50 |
-
gr.Slider(
|
51 |
-
gr.Slider(
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from beeper_model import BeeperRoseGPT, generate # assumed modular split
|
4 |
+
from tokenizers import Tokenizer
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
|
7 |
+
# ----------------------------
|
8 |
+
# 🔧 Load Model and Tokenizer
|
9 |
+
# ----------------------------
|
10 |
+
config = {
|
11 |
+
"context": 512,
|
12 |
+
"vocab_size": 8192,
|
13 |
+
"dim": 512,
|
14 |
+
"n_heads": 8,
|
15 |
+
"n_layers": 6,
|
16 |
+
"mlp_ratio": 4.0,
|
17 |
+
"temperature": 0.9,
|
18 |
+
"top_k": 40,
|
19 |
+
"top_p": 0.9,
|
20 |
+
"repetition_penalty": 1.1,
|
21 |
+
"presence_penalty": 0.6,
|
22 |
+
"frequency_penalty": 0.0,
|
23 |
+
"tokenizer_path": "beeper.tokenizer.json"
|
24 |
+
}
|
25 |
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
|
28 |
+
# Load weights from Hugging Face repo if not available locally
|
29 |
+
repo_id = "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512"
|
30 |
+
model_file = hf_hub_download(repo_id=repo_id, filename="beeper_final.safetensors")
|
31 |
+
tokenizer_file = hf_hub_download(repo_id=repo_id, filename="tokenizer.json")
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
infer = BeeperRoseGPT(config).to(device)
|
34 |
+
infer.load_state_dict(torch.load(model_file, map_location=device))
|
35 |
+
infer.eval()
|
36 |
+
tok = Tokenizer.from_file(tokenizer_file)
|
|
|
37 |
|
38 |
+
# ----------------------------
|
39 |
+
# 💬 Gradio Chat Wrapper
|
40 |
+
# ----------------------------
|
41 |
+
def beeper_reply(message, history, temperature, top_k, top_p):
|
42 |
+
prompt = "\n".join([f"User: {h[0]}\nBeeper: {h[1]}" for h in history if h[0] and h[1]])
|
43 |
+
prompt += f"\nUser: {message}\nBeeper:"
|
44 |
|
45 |
+
out = generate(
|
46 |
+
model=infer,
|
47 |
+
tok=tok,
|
48 |
+
cfg=config,
|
49 |
+
prompt=prompt,
|
50 |
+
max_new_tokens=128,
|
51 |
temperature=temperature,
|
52 |
+
top_k=top_k,
|
53 |
top_p=top_p,
|
54 |
+
repetition_penalty=config["repetition_penalty"],
|
55 |
+
presence_penalty=config["presence_penalty"],
|
56 |
+
frequency_penalty=config["frequency_penalty"],
|
57 |
+
device=device,
|
58 |
+
detokenize=True
|
59 |
+
)
|
60 |
+
yield out
|
61 |
|
62 |
+
# ----------------------------
|
63 |
+
# 🖼️ Interface
|
64 |
+
# ----------------------------
|
|
|
65 |
demo = gr.ChatInterface(
|
66 |
+
beeper_reply,
|
67 |
additional_inputs=[
|
68 |
+
gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature"),
|
69 |
+
gr.Slider(1, 100, value=40, step=1, label="Top-k"),
|
70 |
+
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
],
|
72 |
+
chatbot=gr.Chatbot(label="Hello I'm Beeper (Rose-based LLM)! Please be friendly I don't know very much yet!")
|
73 |
)
|
74 |
|
|
|
75 |
if __name__ == "__main__":
|
76 |
demo.launch()
|