AbstractPhil commited on
Commit
03c8105
·
verified ·
1 Parent(s): 75efec2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -47
app.py CHANGED
@@ -1,64 +1,76 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
 
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
 
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from beeper_model import BeeperRoseGPT, generate # assumed modular split
4
+ from tokenizers import Tokenizer
5
+ from huggingface_hub import hf_hub_download
6
 
7
+ # ----------------------------
8
+ # 🔧 Load Model and Tokenizer
9
+ # ----------------------------
10
+ config = {
11
+ "context": 512,
12
+ "vocab_size": 8192,
13
+ "dim": 512,
14
+ "n_heads": 8,
15
+ "n_layers": 6,
16
+ "mlp_ratio": 4.0,
17
+ "temperature": 0.9,
18
+ "top_k": 40,
19
+ "top_p": 0.9,
20
+ "repetition_penalty": 1.1,
21
+ "presence_penalty": 0.6,
22
+ "frequency_penalty": 0.0,
23
+ "tokenizer_path": "beeper.tokenizer.json"
24
+ }
25
 
26
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
27
 
28
+ # Load weights from Hugging Face repo if not available locally
29
+ repo_id = "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512"
30
+ model_file = hf_hub_download(repo_id=repo_id, filename="beeper_final.safetensors")
31
+ tokenizer_file = hf_hub_download(repo_id=repo_id, filename="tokenizer.json")
 
 
 
 
 
32
 
33
+ infer = BeeperRoseGPT(config).to(device)
34
+ infer.load_state_dict(torch.load(model_file, map_location=device))
35
+ infer.eval()
36
+ tok = Tokenizer.from_file(tokenizer_file)
 
37
 
38
+ # ----------------------------
39
+ # 💬 Gradio Chat Wrapper
40
+ # ----------------------------
41
+ def beeper_reply(message, history, temperature, top_k, top_p):
42
+ prompt = "\n".join([f"User: {h[0]}\nBeeper: {h[1]}" for h in history if h[0] and h[1]])
43
+ prompt += f"\nUser: {message}\nBeeper:"
44
 
45
+ out = generate(
46
+ model=infer,
47
+ tok=tok,
48
+ cfg=config,
49
+ prompt=prompt,
50
+ max_new_tokens=128,
51
  temperature=temperature,
52
+ top_k=top_k,
53
  top_p=top_p,
54
+ repetition_penalty=config["repetition_penalty"],
55
+ presence_penalty=config["presence_penalty"],
56
+ frequency_penalty=config["frequency_penalty"],
57
+ device=device,
58
+ detokenize=True
59
+ )
60
+ yield out
61
 
62
+ # ----------------------------
63
+ # 🖼️ Interface
64
+ # ----------------------------
 
65
  demo = gr.ChatInterface(
66
+ beeper_reply,
67
  additional_inputs=[
68
+ gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature"),
69
+ gr.Slider(1, 100, value=40, step=1, label="Top-k"),
70
+ gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
 
 
 
 
 
 
 
71
  ],
72
+ chatbot=gr.Chatbot(label="Hello I'm Beeper (Rose-based LLM)! Please be friendly I don't know very much yet!")
73
  )
74
 
 
75
  if __name__ == "__main__":
76
  demo.launch()