Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from beeper_model import BeeperRoseGPT, generate
|
4 |
from tokenizers import Tokenizer
|
5 |
from huggingface_hub import hf_hub_download
|
|
|
6 |
|
7 |
# ----------------------------
|
8 |
# 🔧 Load Model and Tokenizer
|
@@ -20,36 +21,57 @@ config = {
|
|
20 |
"repetition_penalty": 1.1,
|
21 |
"presence_penalty": 0.6,
|
22 |
"frequency_penalty": 0.0,
|
|
|
|
|
|
|
23 |
"tokenizer_path": "beeper.tokenizer.json"
|
24 |
}
|
25 |
|
26 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
|
28 |
-
# Load weights from Hugging Face repo
|
29 |
repo_id = "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512"
|
30 |
model_file = hf_hub_download(repo_id=repo_id, filename="beeper_rose_final.safetensors")
|
31 |
tokenizer_file = hf_hub_download(repo_id=repo_id, filename="tokenizer.json")
|
32 |
|
|
|
33 |
infer = BeeperRoseGPT(config).to(device)
|
34 |
-
|
|
|
|
|
|
|
35 |
infer.eval()
|
|
|
|
|
36 |
tok = Tokenizer.from_file(tokenizer_file)
|
37 |
|
38 |
# ----------------------------
|
39 |
# 💬 Gradio Chat Wrapper
|
40 |
# ----------------------------
|
41 |
def beeper_reply(message, history, temperature, top_k, top_p):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
model=infer,
|
47 |
tok=tok,
|
48 |
cfg=config,
|
49 |
prompt=prompt,
|
50 |
max_new_tokens=128,
|
51 |
temperature=temperature,
|
52 |
-
top_k=top_k,
|
53 |
top_p=top_p,
|
54 |
repetition_penalty=config["repetition_penalty"],
|
55 |
presence_penalty=config["presence_penalty"],
|
@@ -57,7 +79,12 @@ def beeper_reply(message, history, temperature, top_k, top_p):
|
|
57 |
device=device,
|
58 |
detokenize=True
|
59 |
)
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# ----------------------------
|
63 |
# 🖼️ Interface
|
@@ -69,8 +96,16 @@ demo = gr.ChatInterface(
|
|
69 |
gr.Slider(1, 100, value=40, step=1, label="Top-k"),
|
70 |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
|
71 |
],
|
72 |
-
chatbot=gr.Chatbot(label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
)
|
74 |
|
75 |
if __name__ == "__main__":
|
76 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from beeper_model import BeeperRoseGPT, generate
|
4 |
from tokenizers import Tokenizer
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
from safetensors.torch import load_file as load_safetensors
|
7 |
|
8 |
# ----------------------------
|
9 |
# 🔧 Load Model and Tokenizer
|
|
|
21 |
"repetition_penalty": 1.1,
|
22 |
"presence_penalty": 0.6,
|
23 |
"frequency_penalty": 0.0,
|
24 |
+
"resid_dropout": 0.1, # Add these for model init
|
25 |
+
"dropout": 0.0,
|
26 |
+
"grad_checkpoint": False,
|
27 |
"tokenizer_path": "beeper.tokenizer.json"
|
28 |
}
|
29 |
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
|
32 |
+
# Load weights from Hugging Face repo
|
33 |
repo_id = "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512"
|
34 |
model_file = hf_hub_download(repo_id=repo_id, filename="beeper_rose_final.safetensors")
|
35 |
tokenizer_file = hf_hub_download(repo_id=repo_id, filename="tokenizer.json")
|
36 |
|
37 |
+
# Initialize model
|
38 |
infer = BeeperRoseGPT(config).to(device)
|
39 |
+
|
40 |
+
# Load safetensors properly
|
41 |
+
state_dict = load_safetensors(model_file, device=str(device))
|
42 |
+
infer.load_state_dict(state_dict)
|
43 |
infer.eval()
|
44 |
+
|
45 |
+
# Load tokenizer
|
46 |
tok = Tokenizer.from_file(tokenizer_file)
|
47 |
|
48 |
# ----------------------------
|
49 |
# 💬 Gradio Chat Wrapper
|
50 |
# ----------------------------
|
51 |
def beeper_reply(message, history, temperature, top_k, top_p):
|
52 |
+
# Build conversation context
|
53 |
+
prompt_parts = []
|
54 |
+
for h in history:
|
55 |
+
if h[0]: # User message exists
|
56 |
+
prompt_parts.append(f"User: {h[0]}")
|
57 |
+
if h[1]: # Assistant response exists
|
58 |
+
prompt_parts.append(f"Beeper: {h[1]}")
|
59 |
+
|
60 |
+
# Add current message
|
61 |
+
prompt_parts.append(f"User: {message}")
|
62 |
+
prompt_parts.append("Beeper:")
|
63 |
+
|
64 |
+
prompt = "\n".join(prompt_parts)
|
65 |
+
|
66 |
+
# Generate response
|
67 |
+
response = generate(
|
68 |
model=infer,
|
69 |
tok=tok,
|
70 |
cfg=config,
|
71 |
prompt=prompt,
|
72 |
max_new_tokens=128,
|
73 |
temperature=temperature,
|
74 |
+
top_k=int(top_k),
|
75 |
top_p=top_p,
|
76 |
repetition_penalty=config["repetition_penalty"],
|
77 |
presence_penalty=config["presence_penalty"],
|
|
|
79 |
device=device,
|
80 |
detokenize=True
|
81 |
)
|
82 |
+
|
83 |
+
# Clean up response - remove the prompt part if it's included
|
84 |
+
if response.startswith(prompt):
|
85 |
+
response = response[len(prompt):].strip()
|
86 |
+
|
87 |
+
return response
|
88 |
|
89 |
# ----------------------------
|
90 |
# 🖼️ Interface
|
|
|
96 |
gr.Slider(1, 100, value=40, step=1, label="Top-k"),
|
97 |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
|
98 |
],
|
99 |
+
chatbot=gr.Chatbot(label="Chat with Beeper 🤖"),
|
100 |
+
title="Beeper - A Rose-based Tiny Language Model",
|
101 |
+
description="Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me - I'm still learning! 💕",
|
102 |
+
examples=[
|
103 |
+
["Hello Beeper! How are you today?"],
|
104 |
+
["Can you tell me a story about a robot?"],
|
105 |
+
["What do you like to do for fun?"],
|
106 |
+
],
|
107 |
+
theme=gr.themes.Soft(),
|
108 |
)
|
109 |
|
110 |
if __name__ == "__main__":
|
111 |
+
demo.launch()
|