Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,22 @@ from huggingface_hub import hf_hub_download
|
|
6 |
from safetensors.torch import load_file as load_safetensors
|
7 |
|
8 |
# ----------------------------
|
9 |
-
# 🔧
|
10 |
# ----------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
config = {
|
12 |
"context": 512,
|
13 |
"vocab_size": 8192,
|
@@ -21,7 +35,7 @@ config = {
|
|
21 |
"repetition_penalty": 1.1,
|
22 |
"presence_penalty": 0.6,
|
23 |
"frequency_penalty": 0.0,
|
24 |
-
"resid_dropout": 0.1,
|
25 |
"dropout": 0.0,
|
26 |
"grad_checkpoint": False,
|
27 |
"tokenizer_path": "beeper.tokenizer.json"
|
@@ -29,26 +43,68 @@ config = {
|
|
29 |
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# Initialize model
|
38 |
-
infer = BeeperRoseGPT(config).to(device)
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
infer
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
# Load
|
46 |
-
|
|
|
47 |
|
48 |
# ----------------------------
|
49 |
# 💬 Gradio Chat Wrapper
|
50 |
# ----------------------------
|
51 |
-
def beeper_reply(message, history, temperature=None, top_k=None, top_p=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Use defaults if not provided (for examples caching)
|
53 |
if temperature is None:
|
54 |
temperature = 0.9
|
@@ -98,24 +154,81 @@ def beeper_reply(message, history, temperature=None, top_k=None, top_p=None):
|
|
98 |
# ----------------------------
|
99 |
# 🖼️ Interface
|
100 |
# ----------------------------
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
demo.launch()
|
|
|
6 |
from safetensors.torch import load_file as load_safetensors
|
7 |
|
8 |
# ----------------------------
|
9 |
+
# 🔧 Model versions configuration
|
10 |
# ----------------------------
|
11 |
+
MODEL_VERSIONS = {
|
12 |
+
"Beeper v1 (Original)": {
|
13 |
+
"repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512",
|
14 |
+
"model_file": "beeper_rose_final.safetensors",
|
15 |
+
"description": "Original Beeper trained on TinyStories"
|
16 |
+
},
|
17 |
+
"Beeper v2 (Extended)": {
|
18 |
+
"repo_id": "AbstractPhil/beeper-rose-v2",
|
19 |
+
"model_file": "beeper_final.safetensors",
|
20 |
+
"description": "Beeper v2 with extended training (~15 epochs)"
|
21 |
+
}
|
22 |
+
}
|
23 |
+
|
24 |
+
# Base configuration
|
25 |
config = {
|
26 |
"context": 512,
|
27 |
"vocab_size": 8192,
|
|
|
35 |
"repetition_penalty": 1.1,
|
36 |
"presence_penalty": 0.6,
|
37 |
"frequency_penalty": 0.0,
|
38 |
+
"resid_dropout": 0.1,
|
39 |
"dropout": 0.0,
|
40 |
"grad_checkpoint": False,
|
41 |
"tokenizer_path": "beeper.tokenizer.json"
|
|
|
43 |
|
44 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
|
46 |
+
# Global model and tokenizer variables
|
47 |
+
infer = None
|
48 |
+
tok = None
|
49 |
+
current_version = None
|
|
|
|
|
|
|
50 |
|
51 |
+
def load_model_version(version_name):
|
52 |
+
"""Load the selected model version"""
|
53 |
+
global infer, tok, current_version
|
54 |
+
|
55 |
+
if current_version == version_name and infer is not None:
|
56 |
+
return f"Already loaded: {version_name}"
|
57 |
+
|
58 |
+
version_info = MODEL_VERSIONS[version_name]
|
59 |
+
|
60 |
+
try:
|
61 |
+
# Download model and tokenizer files
|
62 |
+
model_file = hf_hub_download(
|
63 |
+
repo_id=version_info["repo_id"],
|
64 |
+
filename=version_info["model_file"]
|
65 |
+
)
|
66 |
+
tokenizer_file = hf_hub_download(
|
67 |
+
repo_id=version_info["repo_id"],
|
68 |
+
filename="tokenizer.json"
|
69 |
+
)
|
70 |
+
|
71 |
+
# Initialize model
|
72 |
+
infer = BeeperRoseGPT(config).to(device)
|
73 |
+
|
74 |
+
# Load safetensors
|
75 |
+
state_dict = load_safetensors(model_file, device=str(device))
|
76 |
+
infer.load_state_dict(state_dict)
|
77 |
+
infer.eval()
|
78 |
+
|
79 |
+
# Load tokenizer
|
80 |
+
tok = Tokenizer.from_file(tokenizer_file)
|
81 |
+
|
82 |
+
current_version = version_name
|
83 |
+
return f"Successfully loaded: {version_name}"
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
return f"Error loading {version_name}: {str(e)}"
|
87 |
|
88 |
+
# Load default model on startup
|
89 |
+
load_status = load_model_version("Beeper v1 (Original)")
|
90 |
+
print(load_status)
|
91 |
|
92 |
# ----------------------------
|
93 |
# 💬 Gradio Chat Wrapper
|
94 |
# ----------------------------
|
95 |
+
def beeper_reply(message, history, model_version, temperature=None, top_k=None, top_p=None):
|
96 |
+
global infer, tok, current_version
|
97 |
+
|
98 |
+
# Load model if version changed
|
99 |
+
if model_version != current_version:
|
100 |
+
status = load_model_version(model_version)
|
101 |
+
if "Error" in status:
|
102 |
+
return f"⚠️ {status}"
|
103 |
+
|
104 |
+
# Check if model is loaded
|
105 |
+
if infer is None or tok is None:
|
106 |
+
return "⚠️ Model not loaded. Please select a version and try again."
|
107 |
+
|
108 |
# Use defaults if not provided (for examples caching)
|
109 |
if temperature is None:
|
110 |
temperature = 0.9
|
|
|
154 |
# ----------------------------
|
155 |
# 🖼️ Interface
|
156 |
# ----------------------------
|
157 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
158 |
+
gr.Markdown(
|
159 |
+
"""
|
160 |
+
# 🤖 Beeper - A Rose-based Tiny Language Model
|
161 |
+
Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me - I'm still learning! 💕
|
162 |
+
"""
|
163 |
+
)
|
164 |
+
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Column(scale=3):
|
167 |
+
model_dropdown = gr.Dropdown(
|
168 |
+
choices=list(MODEL_VERSIONS.keys()),
|
169 |
+
value="Beeper v1 (Original)",
|
170 |
+
label="Select Beeper Version",
|
171 |
+
info="Choose which version of Beeper to chat with"
|
172 |
+
)
|
173 |
+
with gr.Column(scale=7):
|
174 |
+
version_info = gr.Markdown("**Current:** Beeper v1 - Original training on TinyStories")
|
175 |
+
|
176 |
+
# Update version info when dropdown changes
|
177 |
+
def update_version_info(version_name):
|
178 |
+
info = MODEL_VERSIONS[version_name]["description"]
|
179 |
+
return f"**Current:** {info}"
|
180 |
+
|
181 |
+
model_dropdown.change(
|
182 |
+
fn=update_version_info,
|
183 |
+
inputs=[model_dropdown],
|
184 |
+
outputs=[version_info]
|
185 |
+
)
|
186 |
+
|
187 |
+
# Chat interface
|
188 |
+
chatbot = gr.Chatbot(label="Chat with Beeper", type="messages", height=400)
|
189 |
+
msg = gr.Textbox(label="Message", placeholder="Type your message here...")
|
190 |
+
|
191 |
+
with gr.Row():
|
192 |
+
with gr.Column(scale=2):
|
193 |
+
temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature")
|
194 |
+
with gr.Column(scale=2):
|
195 |
+
top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k")
|
196 |
+
with gr.Column(scale=2):
|
197 |
+
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
|
198 |
+
|
199 |
+
with gr.Row():
|
200 |
+
submit = gr.Button("Send", variant="primary")
|
201 |
+
clear = gr.Button("Clear")
|
202 |
+
|
203 |
+
# Examples
|
204 |
+
gr.Examples(
|
205 |
+
examples=[
|
206 |
+
["Hello Beeper! How are you today?"],
|
207 |
+
["Can you tell me a story about a robot?"],
|
208 |
+
["What do you like to do for fun?"],
|
209 |
+
["What makes you happy?"],
|
210 |
+
["Tell me about your dreams"],
|
211 |
+
],
|
212 |
+
inputs=msg
|
213 |
+
)
|
214 |
+
|
215 |
+
# Handle chat
|
216 |
+
def respond(message, chat_history, model_version, temperature, top_k, top_p):
|
217 |
+
response = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p)
|
218 |
+
chat_history.append([message, response])
|
219 |
+
return "", chat_history
|
220 |
+
|
221 |
+
msg.submit(
|
222 |
+
respond,
|
223 |
+
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider],
|
224 |
+
[msg, chatbot]
|
225 |
+
)
|
226 |
+
submit.click(
|
227 |
+
respond,
|
228 |
+
[msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider],
|
229 |
+
[msg, chatbot]
|
230 |
+
)
|
231 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
232 |
|
233 |
if __name__ == "__main__":
|
234 |
demo.launch()
|