Spaces:
Running
on
Zero
Running
on
Zero
Update beeper_model.py
Browse files- beeper_model.py +129 -44
beeper_model.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
# beeper.py
|
2 |
# --------------------------------------------------------------------------------------------------
|
3 |
-
# Beeper — Rose-based tiny GPT (inference module)
|
4 |
-
# - Decoder-only GPT with SDPA (FlashAttention path on Ampere
|
5 |
-
# -
|
6 |
-
#
|
7 |
-
#
|
8 |
# --------------------------------------------------------------------------------------------------
|
9 |
from __future__ import annotations
|
10 |
|
@@ -12,7 +12,7 @@ import math
|
|
12 |
import re
|
13 |
import inspect
|
14 |
from contextlib import nullcontext
|
15 |
-
from typing import Optional, Tuple
|
16 |
|
17 |
import torch
|
18 |
import torch.nn as nn
|
@@ -44,13 +44,9 @@ except Exception:
|
|
44 |
|
45 |
|
46 |
def sdpa_ctx_prefer_flash():
|
47 |
-
"""
|
48 |
-
Best-effort context to bias SDPA toward FlashAttention on supported GPUs.
|
49 |
-
Falls back to no-op if not available.
|
50 |
-
"""
|
51 |
if _sdpa_kernel is None or _SDPA_SIG is None:
|
52 |
return nullcontext()
|
53 |
-
|
54 |
params = {p.name for p in _SDPA_SIG.parameters.values()}
|
55 |
try:
|
56 |
if "backends" in params and _SDPBackend is not None:
|
@@ -72,11 +68,7 @@ def sdpa_ctx_prefer_flash():
|
|
72 |
|
73 |
# --------------------------------- Core blocks ------------------------------------------------------
|
74 |
class CausalSelfAttention(nn.Module):
|
75 |
-
"""
|
76 |
-
Multi-head causal self-attention layer using PyTorch SDPA.
|
77 |
-
- On CUDA, uses scaled_dot_product_attention with is_causal=True and dropout during training.
|
78 |
-
- On CPU, falls back to manual masked attention.
|
79 |
-
"""
|
80 |
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
|
81 |
super().__init__()
|
82 |
assert dim % n_heads == 0, "dim must be divisible by n_heads"
|
@@ -139,10 +131,18 @@ class BeeperRoseGPT(nn.Module):
|
|
139 |
Config keys used:
|
140 |
- vocab_size, dim, context, n_heads, n_layers, mlp_ratio
|
141 |
- resid_dropout, dropout, grad_checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
Notes:
|
143 |
- Shares token embedding with LM head (tied weights).
|
144 |
-
- Includes Rose
|
145 |
-
|
146 |
"""
|
147 |
def __init__(self, cfg: dict):
|
148 |
super().__init__()
|
@@ -150,6 +150,7 @@ class BeeperRoseGPT(nn.Module):
|
|
150 |
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
|
151 |
RD, AD = cfg.get("resid_dropout", 0.1), cfg.get("dropout", 0.0)
|
152 |
self.grad_checkpoint = bool(cfg.get("grad_checkpoint", False))
|
|
|
153 |
|
154 |
self.vocab_size, self.context = int(V), int(Ctx)
|
155 |
|
@@ -169,9 +170,7 @@ class BeeperRoseGPT(nn.Module):
|
|
169 |
|
170 |
self.norm = nn.LayerNorm(D)
|
171 |
self.lm_head = nn.Linear(D, V, bias=False)
|
172 |
-
|
173 |
-
# Weight tying
|
174 |
-
self.lm_head.weight = self.token_emb.weight
|
175 |
|
176 |
# Rose projection + anchors (present in checkpoints)
|
177 |
self.rose_proj = nn.Linear(D, D, bias=False)
|
@@ -196,16 +195,12 @@ class BeeperRoseGPT(nn.Module):
|
|
196 |
|
197 |
# ---- Pentachora creation (must match sizes in checkpoint before strict load) -------------------
|
198 |
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device: torch.device):
|
199 |
-
"""
|
200 |
-
Initialize pentachora banks if not already present.
|
201 |
-
Shapes must match checkpoint entries for strict loading.
|
202 |
-
"""
|
203 |
if self.pent_inited.item() == 1:
|
204 |
return
|
205 |
|
206 |
def bank(C: int) -> nn.Parameter:
|
207 |
if C <= 0:
|
208 |
-
# Keep a zero-sized parameter to satisfy strict loading (rare).
|
209 |
return nn.Parameter(torch.zeros((0, 5, dim), device=device))
|
210 |
pts = torch.randn(C, 5, dim, device=device)
|
211 |
pts = F.normalize(pts - pts.mean(dim=1, keepdim=True), dim=-1)
|
@@ -216,6 +211,94 @@ class BeeperRoseGPT(nn.Module):
|
|
216 |
self.penta_fine = bank(int(fine_C))
|
217 |
self.pent_inited.fill_(1)
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
# ---- Backbone / forward -----------------------------------------------------------------------
|
220 |
def _block_forward(self, blk: nn.ModuleDict, x: torch.Tensor) -> torch.Tensor:
|
221 |
x = x + blk["attn"](blk["norm1"](x))
|
@@ -235,8 +318,14 @@ class BeeperRoseGPT(nn.Module):
|
|
235 |
x = self._block_forward(blk, x)
|
236 |
return self.norm(x)
|
237 |
|
238 |
-
def forward(self, idx: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
239 |
h = self.backbone(idx)
|
|
|
|
|
240 |
return self.lm_head(h)
|
241 |
|
242 |
# ---- Utilities ---------------------------------------------------------------------------------
|
@@ -245,7 +334,7 @@ class BeeperRoseGPT(nn.Module):
|
|
245 |
return self.backbone(idx)
|
246 |
|
247 |
def rose_hidden_pool(self, h: torch.Tensor, mode: str = "mean") -> torch.Tensor:
|
248 |
-
"""Pool hidden states for Rose-related terms
|
249 |
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
|
250 |
|
251 |
|
@@ -257,9 +346,7 @@ def prepare_model_for_state_dict(
|
|
257 |
) -> None:
|
258 |
"""
|
259 |
Ensure model has pentachora parameters sized to match the incoming state_dict,
|
260 |
-
so we can load with strict=True.
|
261 |
-
|
262 |
-
If the checkpoint has no pentachora (older versions), we do nothing.
|
263 |
"""
|
264 |
device = device or next(model.parameters()).device
|
265 |
need = all(k in state_dict for k in ("penta_coarse", "penta_medium", "penta_fine"))
|
@@ -267,18 +354,15 @@ def prepare_model_for_state_dict(
|
|
267 |
return
|
268 |
|
269 |
pc, pt, pm = state_dict["penta_coarse"], state_dict["penta_medium"], state_dict["penta_fine"]
|
270 |
-
# Expect [C,5,D]
|
271 |
-
def dims_ok(t: torch.Tensor) -> bool:
|
272 |
-
return t.ndim == 3 and t.size(1) == 5 and t.size(2) == model.token_emb.embedding_dim
|
273 |
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
276 |
return
|
277 |
|
278 |
-
|
279 |
-
topic_C = pt.size(0)
|
280 |
-
mood_C = pm.size(0)
|
281 |
-
model.ensure_pentachora(coarse_C, topic_C, mood_C, dim=pc.size(2), device=device)
|
282 |
|
283 |
|
284 |
# --------------------------------- Generation -------------------------------------------------------
|
@@ -304,9 +388,10 @@ def generate(
|
|
304 |
frequency_penalty: Optional[float] = None,
|
305 |
device: Optional[torch.device] = None,
|
306 |
detokenize: bool = True,
|
|
|
307 |
) -> str:
|
308 |
"""
|
309 |
-
Penalized nucleus sampling
|
310 |
"""
|
311 |
temperature = cfg.get("temperature", 0.9) if temperature is None else float(temperature)
|
312 |
top_k = cfg.get("top_k", 40) if top_k is None else int(top_k)
|
@@ -327,10 +412,10 @@ def generate(
|
|
327 |
counts[t] += 1
|
328 |
|
329 |
for _ in range(int(max_new_tokens)):
|
330 |
-
logits = model(x[:, -cfg["context"]:])
|
331 |
logits = logits[:, -1, :]
|
332 |
|
333 |
-
# Repetition penalty
|
334 |
if repetition_penalty and repetition_penalty != 1.0:
|
335 |
mask = counts > 0
|
336 |
if mask.any():
|
@@ -338,7 +423,7 @@ def generate(
|
|
338 |
logits[:, mask][pos] /= repetition_penalty
|
339 |
logits[:, mask][~pos] *= repetition_penalty
|
340 |
|
341 |
-
# Presence/frequency penalties
|
342 |
if presence_penalty or frequency_penalty:
|
343 |
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
|
344 |
logits = logits - pen.unsqueeze(0)
|
|
|
1 |
# beeper.py
|
2 |
# --------------------------------------------------------------------------------------------------
|
3 |
+
# Beeper Full Penta Controller — Rose-based tiny GPT (inference module with runtime pentachora influence)
|
4 |
+
# - Decoder-only GPT with SDPA (FlashAttention path on Ampere/Hopper)
|
5 |
+
# - Runtime "vertex pull" uses config["runtime_pentachora"] to bias hidden states toward
|
6 |
+
# pentachora vertices (coarse/topic/mood) exactly like training-time behavior, but non-destructive
|
7 |
+
# and fully toggleable.
|
8 |
# --------------------------------------------------------------------------------------------------
|
9 |
from __future__ import annotations
|
10 |
|
|
|
12 |
import re
|
13 |
import inspect
|
14 |
from contextlib import nullcontext
|
15 |
+
from typing import Optional, Tuple, Dict, Any
|
16 |
|
17 |
import torch
|
18 |
import torch.nn as nn
|
|
|
44 |
|
45 |
|
46 |
def sdpa_ctx_prefer_flash():
|
47 |
+
"""Bias SDPA toward FlashAttention where possible; otherwise no-op."""
|
|
|
|
|
|
|
48 |
if _sdpa_kernel is None or _SDPA_SIG is None:
|
49 |
return nullcontext()
|
|
|
50 |
params = {p.name for p in _SDPA_SIG.parameters.values()}
|
51 |
try:
|
52 |
if "backends" in params and _SDPBackend is not None:
|
|
|
68 |
|
69 |
# --------------------------------- Core blocks ------------------------------------------------------
|
70 |
class CausalSelfAttention(nn.Module):
|
71 |
+
"""Multi-head causal self-attention using PyTorch SDPA."""
|
|
|
|
|
|
|
|
|
72 |
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
|
73 |
super().__init__()
|
74 |
assert dim % n_heads == 0, "dim must be divisible by n_heads"
|
|
|
131 |
Config keys used:
|
132 |
- vocab_size, dim, context, n_heads, n_layers, mlp_ratio
|
133 |
- resid_dropout, dropout, grad_checkpoint
|
134 |
+
- runtime_pentachora: {
|
135 |
+
"enable": bool,
|
136 |
+
"pool": "mean" | "last",
|
137 |
+
"temp": float, # similarity temperature (default: 0.10)
|
138 |
+
"coarse_alpha": float, # hidden blend strength for coarse bank
|
139 |
+
"topic_alpha": float, # hidden blend strength for topic bank
|
140 |
+
"mood_alpha": float # hidden blend strength for mood bank
|
141 |
+
}
|
142 |
Notes:
|
143 |
- Shares token embedding with LM head (tied weights).
|
144 |
+
- Includes Rose anchors and pentachora banks; at runtime we can apply a *non-destructive*
|
145 |
+
vertex pull to hidden states before the LM head using the above config.
|
146 |
"""
|
147 |
def __init__(self, cfg: dict):
|
148 |
super().__init__()
|
|
|
150 |
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
|
151 |
RD, AD = cfg.get("resid_dropout", 0.1), cfg.get("dropout", 0.0)
|
152 |
self.grad_checkpoint = bool(cfg.get("grad_checkpoint", False))
|
153 |
+
self.runtime_cfg: Dict[str, Any] = dict(cfg.get("runtime_pentachora", {}) or {})
|
154 |
|
155 |
self.vocab_size, self.context = int(V), int(Ctx)
|
156 |
|
|
|
170 |
|
171 |
self.norm = nn.LayerNorm(D)
|
172 |
self.lm_head = nn.Linear(D, V, bias=False)
|
173 |
+
self.lm_head.weight = self.token_emb.weight # weight tying
|
|
|
|
|
174 |
|
175 |
# Rose projection + anchors (present in checkpoints)
|
176 |
self.rose_proj = nn.Linear(D, D, bias=False)
|
|
|
195 |
|
196 |
# ---- Pentachora creation (must match sizes in checkpoint before strict load) -------------------
|
197 |
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device: torch.device):
|
198 |
+
"""Initialize pentachora banks if not already present."""
|
|
|
|
|
|
|
199 |
if self.pent_inited.item() == 1:
|
200 |
return
|
201 |
|
202 |
def bank(C: int) -> nn.Parameter:
|
203 |
if C <= 0:
|
|
|
204 |
return nn.Parameter(torch.zeros((0, 5, dim), device=device))
|
205 |
pts = torch.randn(C, 5, dim, device=device)
|
206 |
pts = F.normalize(pts - pts.mean(dim=1, keepdim=True), dim=-1)
|
|
|
211 |
self.penta_fine = bank(int(fine_C))
|
212 |
self.pent_inited.fill_(1)
|
213 |
|
214 |
+
# ---- Runtime configuration helpers -------------------------------------------------------------
|
215 |
+
def set_runtime_pentachora(self, cfg: Dict[str, Any]) -> None:
|
216 |
+
"""Update runtime pentachora behavior (enable/alphas/temp/pool)."""
|
217 |
+
self.runtime_cfg.update(cfg or {})
|
218 |
+
|
219 |
+
def _pool_hidden(self, h: torch.Tensor, mode: str) -> torch.Tensor:
|
220 |
+
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
|
221 |
+
|
222 |
+
@staticmethod
|
223 |
+
def _weighted_nearest_vertex_target(
|
224 |
+
pooled: torch.Tensor, # [B,D]
|
225 |
+
bank: torch.Tensor, # [C,5,D]
|
226 |
+
temp: float
|
227 |
+
) -> torch.Tensor:
|
228 |
+
"""
|
229 |
+
For each class (simplex) pick its nearest vertex to the pooled latent,
|
230 |
+
then compute a softmax over classes of -min_dists/temp and take the
|
231 |
+
weighted average of those nearest vertices => [B,D] target.
|
232 |
+
"""
|
233 |
+
B, D = pooled.shape
|
234 |
+
C = bank.size(0)
|
235 |
+
if C == 0:
|
236 |
+
return pooled
|
237 |
+
|
238 |
+
# distances to each vertex
|
239 |
+
diffs = pooled[:, None, None, :] - bank[None, :, :, :] # [B,C,5,D]
|
240 |
+
dists = torch.norm(diffs, dim=-1) # [B,C,5]
|
241 |
+
|
242 |
+
min_dists, min_idx = dists.min(dim=2) # [B,C], [B,C]
|
243 |
+
sims = -min_dists / max(1e-8, float(temp)) # [B,C]
|
244 |
+
weights = F.softmax(sims, dim=-1) # [B,C]
|
245 |
+
|
246 |
+
# gather nearest vertex vectors: [B,C,D]
|
247 |
+
bank_exp = bank.unsqueeze(0).expand(B, -1, -1, -1) # [B,C,5,D]
|
248 |
+
gather_idx = min_idx.unsqueeze(-1).unsqueeze(-1).expand(B, C, 1, D)
|
249 |
+
nearest = torch.gather(bank_exp, 2, gather_idx).squeeze(2) # [B,C,D]
|
250 |
+
|
251 |
+
target = (weights.unsqueeze(-1) * nearest).sum(dim=1) # [B,D]
|
252 |
+
return target
|
253 |
+
|
254 |
+
def _apply_runtime_vertex_pull(
|
255 |
+
self,
|
256 |
+
h: torch.Tensor, # [B,T,D]
|
257 |
+
runtime_cfg: Dict[str, Any]
|
258 |
+
) -> torch.Tensor:
|
259 |
+
"""
|
260 |
+
Apply non-destructive vertex pull to hidden states using banks selected by runtime_cfg.
|
261 |
+
We compute a pooled latent, a per-bank target vector, form a delta, and blend it back into h.
|
262 |
+
"""
|
263 |
+
if not runtime_cfg or not runtime_cfg.get("enable", False):
|
264 |
+
return h
|
265 |
+
|
266 |
+
pool_mode = str(runtime_cfg.get("pool", "mean"))
|
267 |
+
temp = float(runtime_cfg.get("temp", 0.10))
|
268 |
+
|
269 |
+
# Strengths per bank
|
270 |
+
alpha_coarse = float(runtime_cfg.get("coarse_alpha", 0.0))
|
271 |
+
alpha_topic = float(runtime_cfg.get("topic_alpha", 0.0))
|
272 |
+
alpha_mood = float(runtime_cfg.get("mood_alpha", 0.0))
|
273 |
+
|
274 |
+
if (alpha_coarse <= 0 and alpha_topic <= 0 and alpha_mood <= 0):
|
275 |
+
return h
|
276 |
+
|
277 |
+
pooled = self._pool_hidden(h, pool_mode) # [B,D]
|
278 |
+
|
279 |
+
total_delta = None
|
280 |
+
if alpha_coarse > 0 and getattr(self, "penta_coarse", None) is not None:
|
281 |
+
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_coarse, temp)
|
282 |
+
delta = tgt - pooled
|
283 |
+
total_delta = (alpha_coarse * delta) if total_delta is None else total_delta + alpha_coarse * delta
|
284 |
+
|
285 |
+
if alpha_topic > 0 and getattr(self, "penta_medium", None) is not None:
|
286 |
+
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_medium, temp)
|
287 |
+
delta = tgt - pooled
|
288 |
+
total_delta = delta * alpha_topic if total_delta is None else total_delta + alpha_topic * delta
|
289 |
+
|
290 |
+
if alpha_mood > 0 and getattr(self, "penta_fine", None) is not None:
|
291 |
+
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_fine, temp)
|
292 |
+
delta = tgt - pooled
|
293 |
+
total_delta = delta * alpha_mood if total_delta is None else total_delta + alpha_mood * delta
|
294 |
+
|
295 |
+
if total_delta is None:
|
296 |
+
return h
|
297 |
+
|
298 |
+
# Broadcast same delta to all time steps (global conditioning shift)
|
299 |
+
h = h + total_delta.unsqueeze(1) # [B,T,D]
|
300 |
+
return h
|
301 |
+
|
302 |
# ---- Backbone / forward -----------------------------------------------------------------------
|
303 |
def _block_forward(self, blk: nn.ModuleDict, x: torch.Tensor) -> torch.Tensor:
|
304 |
x = x + blk["attn"](blk["norm1"](x))
|
|
|
318 |
x = self._block_forward(blk, x)
|
319 |
return self.norm(x)
|
320 |
|
321 |
+
def forward(self, idx: torch.Tensor, runtime_cfg: Optional[Dict[str, Any]] = None) -> torch.Tensor:
|
322 |
+
"""
|
323 |
+
Forward pass with optional runtime pentachora influence.
|
324 |
+
If runtime_cfg is None, falls back to self.runtime_cfg set at init or via set_runtime_pentachora().
|
325 |
+
"""
|
326 |
h = self.backbone(idx)
|
327 |
+
cfg = self.runtime_cfg if runtime_cfg is None else {**self.runtime_cfg, **(runtime_cfg or {})}
|
328 |
+
h = self._apply_runtime_vertex_pull(h, cfg)
|
329 |
return self.lm_head(h)
|
330 |
|
331 |
# ---- Utilities ---------------------------------------------------------------------------------
|
|
|
334 |
return self.backbone(idx)
|
335 |
|
336 |
def rose_hidden_pool(self, h: torch.Tensor, mode: str = "mean") -> torch.Tensor:
|
337 |
+
"""Pool hidden states for Rose-related terms."""
|
338 |
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
|
339 |
|
340 |
|
|
|
346 |
) -> None:
|
347 |
"""
|
348 |
Ensure model has pentachora parameters sized to match the incoming state_dict,
|
349 |
+
so we can load with strict=True. No-op if checkpoint lacks penta_* keys.
|
|
|
|
|
350 |
"""
|
351 |
device = device or next(model.parameters()).device
|
352 |
need = all(k in state_dict for k in ("penta_coarse", "penta_medium", "penta_fine"))
|
|
|
354 |
return
|
355 |
|
356 |
pc, pt, pm = state_dict["penta_coarse"], state_dict["penta_medium"], state_dict["penta_fine"]
|
|
|
|
|
|
|
357 |
|
358 |
+
def dims_ok(t: torch.Tensor, D: int) -> bool:
|
359 |
+
return t.ndim == 3 and t.size(1) == 5 and t.size(2) == D
|
360 |
+
|
361 |
+
D = model.token_emb.embedding_dim
|
362 |
+
if not (dims_ok(pc, D) and dims_ok(pt, D) and dims_ok(pm, D)):
|
363 |
return
|
364 |
|
365 |
+
model.ensure_pentachora(pc.size(0), pt.size(0), pm.size(0), dim=D, device=device)
|
|
|
|
|
|
|
366 |
|
367 |
|
368 |
# --------------------------------- Generation -------------------------------------------------------
|
|
|
388 |
frequency_penalty: Optional[float] = None,
|
389 |
device: Optional[torch.device] = None,
|
390 |
detokenize: bool = True,
|
391 |
+
runtime_cfg: Optional[Dict[str, Any]] = None, # <— NEW: pass-through to forward()
|
392 |
) -> str:
|
393 |
"""
|
394 |
+
Penalized nucleus sampling with optional runtime pentachora influence.
|
395 |
"""
|
396 |
temperature = cfg.get("temperature", 0.9) if temperature is None else float(temperature)
|
397 |
top_k = cfg.get("top_k", 40) if top_k is None else int(top_k)
|
|
|
412 |
counts[t] += 1
|
413 |
|
414 |
for _ in range(int(max_new_tokens)):
|
415 |
+
logits = model(x[:, -cfg["context"]:], runtime_cfg=runtime_cfg)
|
416 |
logits = logits[:, -1, :]
|
417 |
|
418 |
+
# Repetition penalty
|
419 |
if repetition_penalty and repetition_penalty != 1.0:
|
420 |
mask = counts > 0
|
421 |
if mask.any():
|
|
|
423 |
logits[:, mask][pos] /= repetition_penalty
|
424 |
logits[:, mask][~pos] *= repetition_penalty
|
425 |
|
426 |
+
# Presence/frequency penalties
|
427 |
if presence_penalty or frequency_penalty:
|
428 |
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
|
429 |
logits = logits - pen.unsqueeze(0)
|