AbstractPhil commited on
Commit
d741dd0
·
verified ·
1 Parent(s): c84b8a9

Update beeper_model.py

Browse files
Files changed (1) hide show
  1. beeper_model.py +60 -36
beeper_model.py CHANGED
@@ -1,5 +1,5 @@
1
  """
2
- Rose Beeper Model V4 Fixed - Inference Components
3
  Extracted classes and utilities for model inference
4
  """
5
 
@@ -10,15 +10,17 @@ import torch.nn as nn
10
  import torch.nn.functional as F
11
  from typing import Optional, Tuple, Dict, Any
12
  from contextlib import nullcontext
13
- import re
14
  import inspect
 
 
 
 
15
 
16
- # ============================== Environment Setup ==============================
17
- torch.set_float32_matmul_precision("high")
18
- torch.backends.cuda.matmul.allow_tf32 = True
19
- torch.backends.cudnn.allow_tf32 = True
20
 
21
- # ============================== SDPA Helper ==============================
22
  try:
23
  from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
24
  from torch.nn.attention import SDPBackend as _SDPBackend
@@ -35,6 +37,7 @@ except Exception:
35
  _SDPBackend = None
36
  _sdpa_kernel = None
37
 
 
38
  def sdpa_ctx_prefer_flash():
39
  """Bias SDPA toward FlashAttention when available; no-op if unknown."""
40
  if _sdpa_kernel is None or _SDPA_SIG is None:
@@ -42,14 +45,17 @@ def sdpa_ctx_prefer_flash():
42
 
43
  params = {p.name for p in _SDPA_SIG.parameters.values()}
44
  try:
 
45
  if "backends" in params and _SDPBackend is not None:
46
  return _sdpa_kernel(backends=[
47
  _SDPBackend.FLASH_ATTENTION,
48
  _SDPBackend.EFFICIENT_ATTENTION,
49
  _SDPBackend.MATH
50
  ])
 
51
  if "backend" in params and _SDPBackend is not None:
52
  return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
 
53
  if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
54
  return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
55
  if {"use_flash", "use_math", "use_mem_efficient"} <= params:
@@ -58,7 +64,11 @@ def sdpa_ctx_prefer_flash():
58
  pass
59
  return nullcontext()
60
 
61
- # ============================== Model Components ==============================
 
 
 
 
62
  class CausalSelfAttention(nn.Module):
63
  """Multi-head causal self-attention with optional FlashAttention."""
64
 
@@ -97,8 +107,9 @@ class CausalSelfAttention(nn.Module):
97
  y = y.transpose(1, 2).contiguous().view(B, T, C)
98
  return self.proj(y)
99
 
 
100
  class MLP(nn.Module):
101
- """Feed-forward MLP block with GELU activation."""
102
 
103
  def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
104
  super().__init__()
@@ -115,8 +126,9 @@ class MLP(nn.Module):
115
  x = self.drop(x)
116
  return x
117
 
 
118
  class BeeperRoseGPT(nn.Module):
119
- """Main Rose Beeper GPT model with pentachora banks."""
120
 
121
  def __init__(self, cfg: dict):
122
  super().__init__()
@@ -141,7 +153,7 @@ class BeeperRoseGPT(nn.Module):
141
  self.lm_head = nn.Linear(D, V, bias=False)
142
  self.lm_head.weight = self.token_emb.weight
143
 
144
- # Rose projection + anchors
145
  self.rose_proj = nn.Linear(D, D, bias=False)
146
  self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
147
 
@@ -209,12 +221,17 @@ class BeeperRoseGPT(nn.Module):
209
  def rose_hidden_pool(self, h: torch.Tensor, mode="mean"):
210
  return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
211
 
212
- # ============================== IO Utilities ==============================
 
 
 
 
213
  class BeeperIO:
214
- """Utilities for loading and saving model checkpoints."""
215
 
216
  @staticmethod
217
  def clean_state(sd: dict):
 
218
  out = {}
219
  for k, v in sd.items():
220
  if k.startswith("_orig_mod."):
@@ -226,31 +243,33 @@ class BeeperIO:
226
 
227
  @staticmethod
228
  def load_into_model(model: nn.Module, path: str, map_location="cpu", strict: bool = False):
229
- """Load weights from .pt or .safetensors file."""
230
  ext = os.path.splitext(path)[1].lower()
231
-
232
  if ext == ".safetensors":
233
- from safetensors.torch import load_file as load_safetensors
234
  sd = load_safetensors(path, device="cpu")
235
  else:
236
  raw = torch.load(path, map_location="cpu")
237
  sd = raw["model"] if isinstance(raw, dict) and "model" in raw else raw
238
-
239
  sd = BeeperIO.clean_state(sd)
240
  result = model.load_state_dict(sd, strict=strict)
241
  return result.missing_keys, result.unexpected_keys
242
 
243
- # ============================== Generation ==============================
 
 
 
 
244
  def _detok(text: str) -> str:
245
- """Clean up tokenization artifacts."""
246
  text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
247
  text = re.sub(r"\s+([\)\]\}])", r"\1", text)
248
  text = re.sub(r"([\(\[\{])\s+", r"\1", text)
249
  return text
250
 
 
251
  @torch.no_grad()
252
  def generate(model: BeeperRoseGPT,
253
- tok: "Tokenizer",
254
  cfg: dict,
255
  prompt: str,
256
  max_new_tokens: int = 120,
@@ -263,26 +282,27 @@ def generate(model: BeeperRoseGPT,
263
  device: Optional[torch.device] = None,
264
  detokenize: bool = True) -> str:
265
  """
266
- Generate text from the model with various sampling strategies.
267
 
268
  Args:
269
  model: The BeeperRoseGPT model
270
  tok: Tokenizer instance
271
  cfg: Configuration dictionary
272
- prompt: Input prompt string
273
- max_new_tokens: Maximum tokens to generate
274
- temperature: Sampling temperature
275
  top_k: Top-k sampling parameter
276
  top_p: Top-p (nucleus) sampling parameter
277
  repetition_penalty: Penalty for repeated tokens
278
- presence_penalty: Penalty for token presence
279
  frequency_penalty: Penalty based on token frequency
280
  device: Device to run on
281
- detokenize: Whether to clean up tokenization
282
 
283
  Returns:
284
  Generated text string
285
  """
 
286
  # Use defaults from config if not specified
287
  temperature = cfg["temperature"] if temperature is None else temperature
288
  top_k = cfg["top_k"] if top_k is None else top_k
@@ -294,12 +314,12 @@ def generate(model: BeeperRoseGPT,
294
  device = device or next(model.parameters()).device
295
  model.eval()
296
 
297
- # Encode prompt
298
  ids = tok.encode(prompt).ids
299
  x = torch.tensor([ids], dtype=torch.long, device=device)
300
- counts = torch.zeros(cfg["vocab_size"], dtype=torch.int32, device=device)
301
 
302
- # Track token frequencies
 
303
  for t in ids:
304
  if 0 <= t < cfg["vocab_size"]:
305
  counts[t] += 1
@@ -323,17 +343,17 @@ def generate(model: BeeperRoseGPT,
323
  pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
324
  logits = logits - pen.unsqueeze(0)
325
 
326
- # Temperature scaling
327
  logits = logits / max(1e-8, temperature)
328
 
329
- # Top-k filtering
330
  if top_k and top_k > 0:
331
  k = min(top_k, logits.size(-1))
332
  v, ix = torch.topk(logits, k, dim=-1)
333
  filt = torch.full_like(logits, float("-inf"))
334
  logits = filt.scatter_(-1, ix, v)
335
 
336
- # Top-p (nucleus) filtering
337
  if top_p and top_p < 1.0:
338
  sl, si = torch.sort(logits, descending=True)
339
  ps = F.softmax(sl, dim=-1)
@@ -353,9 +373,13 @@ def generate(model: BeeperRoseGPT,
353
  out = tok.decode(x[0].tolist())
354
  return _detok(out) if detokenize else out
355
 
356
- # ============================== Default Configuration ==============================
 
 
 
 
357
  def get_default_config():
358
- """Return the default configuration for the Rose Beeper model."""
359
  return {
360
  "name": "Rose-Beeper",
361
  "context": 512,
@@ -368,7 +392,7 @@ def get_default_config():
368
  "resid_dropout": 0.1,
369
  "grad_checkpoint": False,
370
 
371
- # Generation parameters
372
  "temperature": 0.9,
373
  "top_k": 40,
374
  "top_p": 0.9,
@@ -376,7 +400,7 @@ def get_default_config():
376
  "presence_penalty": 0.6,
377
  "frequency_penalty": 0.0,
378
 
379
- # Capoera settings
380
  "capoera": {
381
  "enable": True,
382
  "topic_bins": 512,
 
1
  """
2
+ Rose Beeper Model - Inference Components
3
  Extracted classes and utilities for model inference
4
  """
5
 
 
10
  import torch.nn.functional as F
11
  from typing import Optional, Tuple, Dict, Any
12
  from contextlib import nullcontext
 
13
  import inspect
14
+ import re
15
+ from tokenizers import Tokenizer
16
+ from safetensors.torch import load_file as load_safetensors
17
+
18
 
19
+ # ============================================================================
20
+ # SDPA (Scaled Dot Product Attention) Configuration
21
+ # ============================================================================
 
22
 
23
+ # Version-safe SDPA context helper
24
  try:
25
  from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
26
  from torch.nn.attention import SDPBackend as _SDPBackend
 
37
  _SDPBackend = None
38
  _sdpa_kernel = None
39
 
40
+
41
  def sdpa_ctx_prefer_flash():
42
  """Bias SDPA toward FlashAttention when available; no-op if unknown."""
43
  if _sdpa_kernel is None or _SDPA_SIG is None:
 
45
 
46
  params = {p.name for p in _SDPA_SIG.parameters.values()}
47
  try:
48
+ # Modern API (PyTorch 2.3+): backends=[...]
49
  if "backends" in params and _SDPBackend is not None:
50
  return _sdpa_kernel(backends=[
51
  _SDPBackend.FLASH_ATTENTION,
52
  _SDPBackend.EFFICIENT_ATTENTION,
53
  _SDPBackend.MATH
54
  ])
55
+ # Modern API (alt): backend=...
56
  if "backend" in params and _SDPBackend is not None:
57
  return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
58
+ # Legacy boolean flags (old CUDA backend)
59
  if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
60
  return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
61
  if {"use_flash", "use_math", "use_mem_efficient"} <= params:
 
64
  pass
65
  return nullcontext()
66
 
67
+
68
+ # ============================================================================
69
+ # Model Components
70
+ # ============================================================================
71
+
72
  class CausalSelfAttention(nn.Module):
73
  """Multi-head causal self-attention with optional FlashAttention."""
74
 
 
107
  y = y.transpose(1, 2).contiguous().view(B, T, C)
108
  return self.proj(y)
109
 
110
+
111
  class MLP(nn.Module):
112
+ """Feed-forward network with GELU activation."""
113
 
114
  def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
115
  super().__init__()
 
126
  x = self.drop(x)
127
  return x
128
 
129
+
130
  class BeeperRoseGPT(nn.Module):
131
+ """Rose Beeper GPT model with pentachora banks for multi-level control."""
132
 
133
  def __init__(self, cfg: dict):
134
  super().__init__()
 
153
  self.lm_head = nn.Linear(D, V, bias=False)
154
  self.lm_head.weight = self.token_emb.weight
155
 
156
+ # Optional Rose projection + anchors
157
  self.rose_proj = nn.Linear(D, D, bias=False)
158
  self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
159
 
 
221
  def rose_hidden_pool(self, h: torch.Tensor, mode="mean"):
222
  return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
223
 
224
+
225
+ # ============================================================================
226
+ # Model I/O Utilities
227
+ # ============================================================================
228
+
229
  class BeeperIO:
230
+ """Utilities for saving and loading model weights."""
231
 
232
  @staticmethod
233
  def clean_state(sd: dict):
234
+ """Clean state dict keys from various wrappings."""
235
  out = {}
236
  for k, v in sd.items():
237
  if k.startswith("_orig_mod."):
 
243
 
244
  @staticmethod
245
  def load_into_model(model: nn.Module, path: str, map_location="cpu", strict: bool = False):
246
+ """Load weights from file into model."""
247
  ext = os.path.splitext(path)[1].lower()
 
248
  if ext == ".safetensors":
 
249
  sd = load_safetensors(path, device="cpu")
250
  else:
251
  raw = torch.load(path, map_location="cpu")
252
  sd = raw["model"] if isinstance(raw, dict) and "model" in raw else raw
 
253
  sd = BeeperIO.clean_state(sd)
254
  result = model.load_state_dict(sd, strict=strict)
255
  return result.missing_keys, result.unexpected_keys
256
 
257
+
258
+ # ============================================================================
259
+ # Text Generation
260
+ # ============================================================================
261
+
262
  def _detok(text: str) -> str:
263
+ """Clean up tokenized text spacing."""
264
  text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
265
  text = re.sub(r"\s+([\)\]\}])", r"\1", text)
266
  text = re.sub(r"([\(\[\{])\s+", r"\1", text)
267
  return text
268
 
269
+
270
  @torch.no_grad()
271
  def generate(model: BeeperRoseGPT,
272
+ tok: Tokenizer,
273
  cfg: dict,
274
  prompt: str,
275
  max_new_tokens: int = 120,
 
282
  device: Optional[torch.device] = None,
283
  detokenize: bool = True) -> str:
284
  """
285
+ Generate text from a prompt using the model.
286
 
287
  Args:
288
  model: The BeeperRoseGPT model
289
  tok: Tokenizer instance
290
  cfg: Configuration dictionary
291
+ prompt: Input text prompt
292
+ max_new_tokens: Maximum number of tokens to generate
293
+ temperature: Sampling temperature (higher = more random)
294
  top_k: Top-k sampling parameter
295
  top_p: Top-p (nucleus) sampling parameter
296
  repetition_penalty: Penalty for repeated tokens
297
+ presence_penalty: Penalty for tokens that have appeared
298
  frequency_penalty: Penalty based on token frequency
299
  device: Device to run on
300
+ detokenize: Whether to clean up tokenization artifacts
301
 
302
  Returns:
303
  Generated text string
304
  """
305
+
306
  # Use defaults from config if not specified
307
  temperature = cfg["temperature"] if temperature is None else temperature
308
  top_k = cfg["top_k"] if top_k is None else top_k
 
314
  device = device or next(model.parameters()).device
315
  model.eval()
316
 
317
+ # Tokenize prompt
318
  ids = tok.encode(prompt).ids
319
  x = torch.tensor([ids], dtype=torch.long, device=device)
 
320
 
321
+ # Track token counts for penalties
322
+ counts = torch.zeros(cfg["vocab_size"], dtype=torch.int32, device=device)
323
  for t in ids:
324
  if 0 <= t < cfg["vocab_size"]:
325
  counts[t] += 1
 
343
  pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
344
  logits = logits - pen.unsqueeze(0)
345
 
346
+ # Apply temperature
347
  logits = logits / max(1e-8, temperature)
348
 
349
+ # Apply top-k sampling
350
  if top_k and top_k > 0:
351
  k = min(top_k, logits.size(-1))
352
  v, ix = torch.topk(logits, k, dim=-1)
353
  filt = torch.full_like(logits, float("-inf"))
354
  logits = filt.scatter_(-1, ix, v)
355
 
356
+ # Apply top-p (nucleus) sampling
357
  if top_p and top_p < 1.0:
358
  sl, si = torch.sort(logits, descending=True)
359
  ps = F.softmax(sl, dim=-1)
 
373
  out = tok.decode(x[0].tolist())
374
  return _detok(out) if detokenize else out
375
 
376
+
377
+ # ============================================================================
378
+ # Default Configuration
379
+ # ============================================================================
380
+
381
  def get_default_config():
382
+ """Get the default configuration for the model."""
383
  return {
384
  "name": "Rose-Beeper",
385
  "context": 512,
 
392
  "resid_dropout": 0.1,
393
  "grad_checkpoint": False,
394
 
395
+ # Generation defaults
396
  "temperature": 0.9,
397
  "top_k": 40,
398
  "top_p": 0.9,
 
400
  "presence_penalty": 0.6,
401
  "frequency_penalty": 0.0,
402
 
403
+ # Capoera configuration
404
  "capoera": {
405
  "enable": True,
406
  "topic_bins": 512,