Spaces:
Running
on
Zero
Running
on
Zero
Update beeper_model.py
Browse files- beeper_model.py +60 -36
beeper_model.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
"""
|
2 |
-
Rose Beeper Model
|
3 |
Extracted classes and utilities for model inference
|
4 |
"""
|
5 |
|
@@ -10,15 +10,17 @@ import torch.nn as nn
|
|
10 |
import torch.nn.functional as F
|
11 |
from typing import Optional, Tuple, Dict, Any
|
12 |
from contextlib import nullcontext
|
13 |
-
import re
|
14 |
import inspect
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
torch.backends.cudnn.allow_tf32 = True
|
20 |
|
21 |
-
#
|
22 |
try:
|
23 |
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
|
24 |
from torch.nn.attention import SDPBackend as _SDPBackend
|
@@ -35,6 +37,7 @@ except Exception:
|
|
35 |
_SDPBackend = None
|
36 |
_sdpa_kernel = None
|
37 |
|
|
|
38 |
def sdpa_ctx_prefer_flash():
|
39 |
"""Bias SDPA toward FlashAttention when available; no-op if unknown."""
|
40 |
if _sdpa_kernel is None or _SDPA_SIG is None:
|
@@ -42,14 +45,17 @@ def sdpa_ctx_prefer_flash():
|
|
42 |
|
43 |
params = {p.name for p in _SDPA_SIG.parameters.values()}
|
44 |
try:
|
|
|
45 |
if "backends" in params and _SDPBackend is not None:
|
46 |
return _sdpa_kernel(backends=[
|
47 |
_SDPBackend.FLASH_ATTENTION,
|
48 |
_SDPBackend.EFFICIENT_ATTENTION,
|
49 |
_SDPBackend.MATH
|
50 |
])
|
|
|
51 |
if "backend" in params and _SDPBackend is not None:
|
52 |
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
|
|
|
53 |
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
|
54 |
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
|
55 |
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
|
@@ -58,7 +64,11 @@ def sdpa_ctx_prefer_flash():
|
|
58 |
pass
|
59 |
return nullcontext()
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
class CausalSelfAttention(nn.Module):
|
63 |
"""Multi-head causal self-attention with optional FlashAttention."""
|
64 |
|
@@ -97,8 +107,9 @@ class CausalSelfAttention(nn.Module):
|
|
97 |
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
98 |
return self.proj(y)
|
99 |
|
|
|
100 |
class MLP(nn.Module):
|
101 |
-
"""Feed-forward
|
102 |
|
103 |
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
|
104 |
super().__init__()
|
@@ -115,8 +126,9 @@ class MLP(nn.Module):
|
|
115 |
x = self.drop(x)
|
116 |
return x
|
117 |
|
|
|
118 |
class BeeperRoseGPT(nn.Module):
|
119 |
-
"""
|
120 |
|
121 |
def __init__(self, cfg: dict):
|
122 |
super().__init__()
|
@@ -141,7 +153,7 @@ class BeeperRoseGPT(nn.Module):
|
|
141 |
self.lm_head = nn.Linear(D, V, bias=False)
|
142 |
self.lm_head.weight = self.token_emb.weight
|
143 |
|
144 |
-
# Rose projection + anchors
|
145 |
self.rose_proj = nn.Linear(D, D, bias=False)
|
146 |
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
|
147 |
|
@@ -209,12 +221,17 @@ class BeeperRoseGPT(nn.Module):
|
|
209 |
def rose_hidden_pool(self, h: torch.Tensor, mode="mean"):
|
210 |
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
|
211 |
|
212 |
-
|
|
|
|
|
|
|
|
|
213 |
class BeeperIO:
|
214 |
-
"""Utilities for
|
215 |
|
216 |
@staticmethod
|
217 |
def clean_state(sd: dict):
|
|
|
218 |
out = {}
|
219 |
for k, v in sd.items():
|
220 |
if k.startswith("_orig_mod."):
|
@@ -226,31 +243,33 @@ class BeeperIO:
|
|
226 |
|
227 |
@staticmethod
|
228 |
def load_into_model(model: nn.Module, path: str, map_location="cpu", strict: bool = False):
|
229 |
-
"""Load weights from
|
230 |
ext = os.path.splitext(path)[1].lower()
|
231 |
-
|
232 |
if ext == ".safetensors":
|
233 |
-
from safetensors.torch import load_file as load_safetensors
|
234 |
sd = load_safetensors(path, device="cpu")
|
235 |
else:
|
236 |
raw = torch.load(path, map_location="cpu")
|
237 |
sd = raw["model"] if isinstance(raw, dict) and "model" in raw else raw
|
238 |
-
|
239 |
sd = BeeperIO.clean_state(sd)
|
240 |
result = model.load_state_dict(sd, strict=strict)
|
241 |
return result.missing_keys, result.unexpected_keys
|
242 |
|
243 |
-
|
|
|
|
|
|
|
|
|
244 |
def _detok(text: str) -> str:
|
245 |
-
"""Clean up
|
246 |
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
|
247 |
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
|
248 |
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
|
249 |
return text
|
250 |
|
|
|
251 |
@torch.no_grad()
|
252 |
def generate(model: BeeperRoseGPT,
|
253 |
-
tok:
|
254 |
cfg: dict,
|
255 |
prompt: str,
|
256 |
max_new_tokens: int = 120,
|
@@ -263,26 +282,27 @@ def generate(model: BeeperRoseGPT,
|
|
263 |
device: Optional[torch.device] = None,
|
264 |
detokenize: bool = True) -> str:
|
265 |
"""
|
266 |
-
Generate text from
|
267 |
|
268 |
Args:
|
269 |
model: The BeeperRoseGPT model
|
270 |
tok: Tokenizer instance
|
271 |
cfg: Configuration dictionary
|
272 |
-
prompt: Input prompt
|
273 |
-
max_new_tokens: Maximum tokens to generate
|
274 |
-
temperature: Sampling temperature
|
275 |
top_k: Top-k sampling parameter
|
276 |
top_p: Top-p (nucleus) sampling parameter
|
277 |
repetition_penalty: Penalty for repeated tokens
|
278 |
-
presence_penalty: Penalty for
|
279 |
frequency_penalty: Penalty based on token frequency
|
280 |
device: Device to run on
|
281 |
-
detokenize: Whether to clean up tokenization
|
282 |
|
283 |
Returns:
|
284 |
Generated text string
|
285 |
"""
|
|
|
286 |
# Use defaults from config if not specified
|
287 |
temperature = cfg["temperature"] if temperature is None else temperature
|
288 |
top_k = cfg["top_k"] if top_k is None else top_k
|
@@ -294,12 +314,12 @@ def generate(model: BeeperRoseGPT,
|
|
294 |
device = device or next(model.parameters()).device
|
295 |
model.eval()
|
296 |
|
297 |
-
#
|
298 |
ids = tok.encode(prompt).ids
|
299 |
x = torch.tensor([ids], dtype=torch.long, device=device)
|
300 |
-
counts = torch.zeros(cfg["vocab_size"], dtype=torch.int32, device=device)
|
301 |
|
302 |
-
# Track token
|
|
|
303 |
for t in ids:
|
304 |
if 0 <= t < cfg["vocab_size"]:
|
305 |
counts[t] += 1
|
@@ -323,17 +343,17 @@ def generate(model: BeeperRoseGPT,
|
|
323 |
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
|
324 |
logits = logits - pen.unsqueeze(0)
|
325 |
|
326 |
-
#
|
327 |
logits = logits / max(1e-8, temperature)
|
328 |
|
329 |
-
#
|
330 |
if top_k and top_k > 0:
|
331 |
k = min(top_k, logits.size(-1))
|
332 |
v, ix = torch.topk(logits, k, dim=-1)
|
333 |
filt = torch.full_like(logits, float("-inf"))
|
334 |
logits = filt.scatter_(-1, ix, v)
|
335 |
|
336 |
-
#
|
337 |
if top_p and top_p < 1.0:
|
338 |
sl, si = torch.sort(logits, descending=True)
|
339 |
ps = F.softmax(sl, dim=-1)
|
@@ -353,9 +373,13 @@ def generate(model: BeeperRoseGPT,
|
|
353 |
out = tok.decode(x[0].tolist())
|
354 |
return _detok(out) if detokenize else out
|
355 |
|
356 |
-
|
|
|
|
|
|
|
|
|
357 |
def get_default_config():
|
358 |
-
"""
|
359 |
return {
|
360 |
"name": "Rose-Beeper",
|
361 |
"context": 512,
|
@@ -368,7 +392,7 @@ def get_default_config():
|
|
368 |
"resid_dropout": 0.1,
|
369 |
"grad_checkpoint": False,
|
370 |
|
371 |
-
# Generation
|
372 |
"temperature": 0.9,
|
373 |
"top_k": 40,
|
374 |
"top_p": 0.9,
|
@@ -376,7 +400,7 @@ def get_default_config():
|
|
376 |
"presence_penalty": 0.6,
|
377 |
"frequency_penalty": 0.0,
|
378 |
|
379 |
-
# Capoera
|
380 |
"capoera": {
|
381 |
"enable": True,
|
382 |
"topic_bins": 512,
|
|
|
1 |
"""
|
2 |
+
Rose Beeper Model - Inference Components
|
3 |
Extracted classes and utilities for model inference
|
4 |
"""
|
5 |
|
|
|
10 |
import torch.nn.functional as F
|
11 |
from typing import Optional, Tuple, Dict, Any
|
12 |
from contextlib import nullcontext
|
|
|
13 |
import inspect
|
14 |
+
import re
|
15 |
+
from tokenizers import Tokenizer
|
16 |
+
from safetensors.torch import load_file as load_safetensors
|
17 |
+
|
18 |
|
19 |
+
# ============================================================================
|
20 |
+
# SDPA (Scaled Dot Product Attention) Configuration
|
21 |
+
# ============================================================================
|
|
|
22 |
|
23 |
+
# Version-safe SDPA context helper
|
24 |
try:
|
25 |
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
|
26 |
from torch.nn.attention import SDPBackend as _SDPBackend
|
|
|
37 |
_SDPBackend = None
|
38 |
_sdpa_kernel = None
|
39 |
|
40 |
+
|
41 |
def sdpa_ctx_prefer_flash():
|
42 |
"""Bias SDPA toward FlashAttention when available; no-op if unknown."""
|
43 |
if _sdpa_kernel is None or _SDPA_SIG is None:
|
|
|
45 |
|
46 |
params = {p.name for p in _SDPA_SIG.parameters.values()}
|
47 |
try:
|
48 |
+
# Modern API (PyTorch 2.3+): backends=[...]
|
49 |
if "backends" in params and _SDPBackend is not None:
|
50 |
return _sdpa_kernel(backends=[
|
51 |
_SDPBackend.FLASH_ATTENTION,
|
52 |
_SDPBackend.EFFICIENT_ATTENTION,
|
53 |
_SDPBackend.MATH
|
54 |
])
|
55 |
+
# Modern API (alt): backend=...
|
56 |
if "backend" in params and _SDPBackend is not None:
|
57 |
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
|
58 |
+
# Legacy boolean flags (old CUDA backend)
|
59 |
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
|
60 |
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
|
61 |
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
|
|
|
64 |
pass
|
65 |
return nullcontext()
|
66 |
|
67 |
+
|
68 |
+
# ============================================================================
|
69 |
+
# Model Components
|
70 |
+
# ============================================================================
|
71 |
+
|
72 |
class CausalSelfAttention(nn.Module):
|
73 |
"""Multi-head causal self-attention with optional FlashAttention."""
|
74 |
|
|
|
107 |
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
108 |
return self.proj(y)
|
109 |
|
110 |
+
|
111 |
class MLP(nn.Module):
|
112 |
+
"""Feed-forward network with GELU activation."""
|
113 |
|
114 |
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
|
115 |
super().__init__()
|
|
|
126 |
x = self.drop(x)
|
127 |
return x
|
128 |
|
129 |
+
|
130 |
class BeeperRoseGPT(nn.Module):
|
131 |
+
"""Rose Beeper GPT model with pentachora banks for multi-level control."""
|
132 |
|
133 |
def __init__(self, cfg: dict):
|
134 |
super().__init__()
|
|
|
153 |
self.lm_head = nn.Linear(D, V, bias=False)
|
154 |
self.lm_head.weight = self.token_emb.weight
|
155 |
|
156 |
+
# Optional Rose projection + anchors
|
157 |
self.rose_proj = nn.Linear(D, D, bias=False)
|
158 |
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
|
159 |
|
|
|
221 |
def rose_hidden_pool(self, h: torch.Tensor, mode="mean"):
|
222 |
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
|
223 |
|
224 |
+
|
225 |
+
# ============================================================================
|
226 |
+
# Model I/O Utilities
|
227 |
+
# ============================================================================
|
228 |
+
|
229 |
class BeeperIO:
|
230 |
+
"""Utilities for saving and loading model weights."""
|
231 |
|
232 |
@staticmethod
|
233 |
def clean_state(sd: dict):
|
234 |
+
"""Clean state dict keys from various wrappings."""
|
235 |
out = {}
|
236 |
for k, v in sd.items():
|
237 |
if k.startswith("_orig_mod."):
|
|
|
243 |
|
244 |
@staticmethod
|
245 |
def load_into_model(model: nn.Module, path: str, map_location="cpu", strict: bool = False):
|
246 |
+
"""Load weights from file into model."""
|
247 |
ext = os.path.splitext(path)[1].lower()
|
|
|
248 |
if ext == ".safetensors":
|
|
|
249 |
sd = load_safetensors(path, device="cpu")
|
250 |
else:
|
251 |
raw = torch.load(path, map_location="cpu")
|
252 |
sd = raw["model"] if isinstance(raw, dict) and "model" in raw else raw
|
|
|
253 |
sd = BeeperIO.clean_state(sd)
|
254 |
result = model.load_state_dict(sd, strict=strict)
|
255 |
return result.missing_keys, result.unexpected_keys
|
256 |
|
257 |
+
|
258 |
+
# ============================================================================
|
259 |
+
# Text Generation
|
260 |
+
# ============================================================================
|
261 |
+
|
262 |
def _detok(text: str) -> str:
|
263 |
+
"""Clean up tokenized text spacing."""
|
264 |
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
|
265 |
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
|
266 |
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
|
267 |
return text
|
268 |
|
269 |
+
|
270 |
@torch.no_grad()
|
271 |
def generate(model: BeeperRoseGPT,
|
272 |
+
tok: Tokenizer,
|
273 |
cfg: dict,
|
274 |
prompt: str,
|
275 |
max_new_tokens: int = 120,
|
|
|
282 |
device: Optional[torch.device] = None,
|
283 |
detokenize: bool = True) -> str:
|
284 |
"""
|
285 |
+
Generate text from a prompt using the model.
|
286 |
|
287 |
Args:
|
288 |
model: The BeeperRoseGPT model
|
289 |
tok: Tokenizer instance
|
290 |
cfg: Configuration dictionary
|
291 |
+
prompt: Input text prompt
|
292 |
+
max_new_tokens: Maximum number of tokens to generate
|
293 |
+
temperature: Sampling temperature (higher = more random)
|
294 |
top_k: Top-k sampling parameter
|
295 |
top_p: Top-p (nucleus) sampling parameter
|
296 |
repetition_penalty: Penalty for repeated tokens
|
297 |
+
presence_penalty: Penalty for tokens that have appeared
|
298 |
frequency_penalty: Penalty based on token frequency
|
299 |
device: Device to run on
|
300 |
+
detokenize: Whether to clean up tokenization artifacts
|
301 |
|
302 |
Returns:
|
303 |
Generated text string
|
304 |
"""
|
305 |
+
|
306 |
# Use defaults from config if not specified
|
307 |
temperature = cfg["temperature"] if temperature is None else temperature
|
308 |
top_k = cfg["top_k"] if top_k is None else top_k
|
|
|
314 |
device = device or next(model.parameters()).device
|
315 |
model.eval()
|
316 |
|
317 |
+
# Tokenize prompt
|
318 |
ids = tok.encode(prompt).ids
|
319 |
x = torch.tensor([ids], dtype=torch.long, device=device)
|
|
|
320 |
|
321 |
+
# Track token counts for penalties
|
322 |
+
counts = torch.zeros(cfg["vocab_size"], dtype=torch.int32, device=device)
|
323 |
for t in ids:
|
324 |
if 0 <= t < cfg["vocab_size"]:
|
325 |
counts[t] += 1
|
|
|
343 |
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
|
344 |
logits = logits - pen.unsqueeze(0)
|
345 |
|
346 |
+
# Apply temperature
|
347 |
logits = logits / max(1e-8, temperature)
|
348 |
|
349 |
+
# Apply top-k sampling
|
350 |
if top_k and top_k > 0:
|
351 |
k = min(top_k, logits.size(-1))
|
352 |
v, ix = torch.topk(logits, k, dim=-1)
|
353 |
filt = torch.full_like(logits, float("-inf"))
|
354 |
logits = filt.scatter_(-1, ix, v)
|
355 |
|
356 |
+
# Apply top-p (nucleus) sampling
|
357 |
if top_p and top_p < 1.0:
|
358 |
sl, si = torch.sort(logits, descending=True)
|
359 |
ps = F.softmax(sl, dim=-1)
|
|
|
373 |
out = tok.decode(x[0].tolist())
|
374 |
return _detok(out) if detokenize else out
|
375 |
|
376 |
+
|
377 |
+
# ============================================================================
|
378 |
+
# Default Configuration
|
379 |
+
# ============================================================================
|
380 |
+
|
381 |
def get_default_config():
|
382 |
+
"""Get the default configuration for the model."""
|
383 |
return {
|
384 |
"name": "Rose-Beeper",
|
385 |
"context": 512,
|
|
|
392 |
"resid_dropout": 0.1,
|
393 |
"grad_checkpoint": False,
|
394 |
|
395 |
+
# Generation defaults
|
396 |
"temperature": 0.9,
|
397 |
"top_k": 40,
|
398 |
"top_p": 0.9,
|
|
|
400 |
"presence_penalty": 0.6,
|
401 |
"frequency_penalty": 0.0,
|
402 |
|
403 |
+
# Capoera configuration
|
404 |
"capoera": {
|
405 |
"enable": True,
|
406 |
"topic_bins": 512,
|