import streamlit as st import csv import chromadb from chromadb.utils import embedding_functions from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import pipeline from langchain.llms import HuggingFacePipeline chroma_client = chromadb.PersistentClient(path="data_db") sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-mpnet-base-v2") collection = chroma_client.get_or_create_collection(name="my_collection", embedding_function=sentence_transformer_ef) # Streamlit app layout st.title("ChromaDB and HuggingFace Pipeline Integration") query = st.text_input("Enter your query:", value="director") if st.button("Search"): results = collection.query( query_texts=[query], n_results=3, include=['documents', 'distances', 'metadatas'] ) st.write("Query Results:") st.write(results['metadatas']) if results['documents']: context = results['documents'][0][0] st.write("Context:") st.write(context) tokenizer = AutoTokenizer.from_pretrained("MBZUAI/LaMini-T5-738M") model = AutoModelForSeq2SeqLM.from_pretrained("MBZUAI/LaMini-T5-738M") pipe = pipeline( "text2text-generation", model=model, tokenizer=tokenizer, max_length=512 ) local_llm = HuggingFacePipeline(pipeline=pipe) l = f""" Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. {context} Question: {query} Helpful Answer: """ answer = local_llm(l) st.write("Answer:") st.write(answer)