pdf_qa / app.py
Adarsh-aot's picture
Update app.py
f0c50f4 verified
raw
history blame
2.52 kB
import streamlit as st
import chromadb
from chromadb.utils import embedding_functions
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
from langchain_community.llms import HuggingFacePipeline
# Initialize ChromaDB client
chroma_client = chromadb.PersistentClient(path="data_db")
# Define the embedding function
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-mpnet-base-v2")
# Get or create a collection
collection = chroma_client.get_or_create_collection(name="my_collection", embedding_function=sentence_transformer_ef)
# Streamlit UI elements
st.title("ChromaDB and HuggingFace Pipeline Integration")
query = st.text_input("Enter your query:", value="director")
if st.button("Search"):
# Query the collection
results = collection.query(
query_texts=[query],
n_results=1,
include=['documents', 'distances', 'metadatas']
)
st.write("Query Results:")
st.write(results['metadatas'])
# Log the structure of results
st.write("Results Structure:")
st.write(results)
if 'documents' in results and results['documents']:
# Check if the structure of results['documents'] is as expected
if len(results['documents']) > 0 and isinstance(results['documents'][0], list) and len(results['documents'][0]) > 0:
context = results['documents'][0][0]
st.write("Context:")
st.write(context)
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("MBZUAI/LaMini-T5-738M")
model = AutoModelForSeq2SeqLM.from_pretrained("MBZUAI/LaMini-T5-738M")
# Create pipeline
pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
max_length=512
)
local_llm = HuggingFacePipeline(pipeline=pipe)
l = f"""
Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {query}
Helpful Answer:
"""
# Generate answer
answer = local_llm(l)
st.write("Answer:")
st.write(answer)
else:
st.write("No valid context found in the results.")
else:
st.write("No documents found for the query.")