Adarsh-aot commited on
Commit
07ae696
·
verified ·
1 Parent(s): 228558e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -24
app.py CHANGED
@@ -7,30 +7,6 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
7
  from transformers import pipeline
8
  from langchain.llms import HuggingFacePipeline
9
 
10
- # Load sample data (a restaurant menu of items)
11
- # with open('./data.csv') as file:
12
- # lines = csv.reader(file)
13
-
14
- # # Store the name of the menu items in this array. In Chroma, a "document" is a string i.e. name, sentence, paragraph, etc.
15
- # documents = []
16
-
17
- # # Store the corresponding menu item IDs in this array.
18
- # metadatas = []
19
-
20
- # # Each "document" needs a unique ID. This is like the primary key of a relational database. We'll start at 1 and increment from there.
21
- # ids = []
22
- # id = 1
23
-
24
- # # Loop thru each line and populate the 3 arrays.
25
- # for i, line in enumerate(lines):
26
- # if i == 0:
27
- # # Skip the first row (the column headers)
28
- # continue
29
-
30
- # documents.append(line[0])
31
- # metadatas.append({"item_id": line[1]})
32
- # ids.append(str(id))
33
- # id += 1
34
 
35
  # Instantiate chromadb instance. Data is stored on disk (a folder named 'my_vectordb' will be created in the same folder as this file).
36
  chroma_client = chromadb.PersistentClient(path="vector_db")
 
7
  from transformers import pipeline
8
  from langchain.llms import HuggingFacePipeline
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  # Instantiate chromadb instance. Data is stored on disk (a folder named 'my_vectordb' will be created in the same folder as this file).
12
  chroma_client = chromadb.PersistentClient(path="vector_db")