Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -5,18 +5,64 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
5 |
from transformers import pipeline
|
6 |
from langchain_community.llms import HuggingFacePipeline
|
7 |
|
8 |
-
# Initialize ChromaDB client
|
9 |
-
chroma_client = chromadb.PersistentClient(path="data_db")
|
10 |
|
11 |
-
# Define the embedding function
|
12 |
-
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-mpnet-base-v2")
|
13 |
|
14 |
-
# Get or create a collection
|
15 |
-
collection = chroma_client.get_or_create_collection(name="my_collection", embedding_function=sentence_transformer_ef)
|
16 |
|
17 |
# Streamlit UI elements
|
18 |
st.title("ChromaDB and HuggingFace Pipeline Integration")
|
19 |
query = st.text_input("Enter your query:", value="director")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if st.button("Search"):
|
22 |
# Query the collection
|
|
|
5 |
from transformers import pipeline
|
6 |
from langchain_community.llms import HuggingFacePipeline
|
7 |
|
8 |
+
# # Initialize ChromaDB client
|
9 |
+
# chroma_client = chromadb.PersistentClient(path="data_db")
|
10 |
|
11 |
+
# # Define the embedding function
|
12 |
+
# sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-mpnet-base-v2")
|
13 |
|
14 |
+
# # Get or create a collection
|
15 |
+
# collection = chroma_client.get_or_create_collection(name="my_collection", embedding_function=sentence_transformer_ef)
|
16 |
|
17 |
# Streamlit UI elements
|
18 |
st.title("ChromaDB and HuggingFace Pipeline Integration")
|
19 |
query = st.text_input("Enter your query:", value="director")
|
20 |
+
import csv
|
21 |
+
import chromadb
|
22 |
+
from chromadb.utils import embedding_functions
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
with open('./output.csv' , encoding="utf-8") as file:
|
27 |
+
lines = csv.reader(file)
|
28 |
+
|
29 |
+
|
30 |
+
documents = []
|
31 |
+
|
32 |
+
|
33 |
+
metadatas = []
|
34 |
+
|
35 |
+
|
36 |
+
ids = []
|
37 |
+
id = 1
|
38 |
+
|
39 |
+
|
40 |
+
for i, line in enumerate(lines):
|
41 |
+
if i == 0:
|
42 |
+
|
43 |
+
continue
|
44 |
+
|
45 |
+
documents.append(line[0])
|
46 |
+
metadatas.append({"item_id": line[1]})
|
47 |
+
ids.append(str(id))
|
48 |
+
id += 1
|
49 |
+
|
50 |
+
|
51 |
+
chroma_client = chromadb.PersistentClient(path="db")
|
52 |
+
|
53 |
+
|
54 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-mpnet-base-v2")
|
55 |
+
|
56 |
+
|
57 |
+
collection = chroma_client.get_or_create_collection(name="my_collection", embedding_function=sentence_transformer_ef)
|
58 |
+
|
59 |
+
|
60 |
+
collection.add(
|
61 |
+
documents=documents,
|
62 |
+
metadatas=metadatas,
|
63 |
+
ids=ids
|
64 |
+
)
|
65 |
+
|
66 |
|
67 |
if st.button("Search"):
|
68 |
# Query the collection
|