Update app.py
Browse files
app.py
CHANGED
@@ -1,221 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import altair as alt
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
import streamlit as st
|
7 |
import cv2
|
8 |
import torch
|
9 |
-
import numpy as np
|
10 |
-
import os
|
11 |
-
import tempfile
|
12 |
-
import time
|
13 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
14 |
from collections import deque
|
15 |
import tensorflow as tf
|
16 |
-
from tensorflow.keras.preprocessing import image
|
17 |
from tensorflow.keras.models import load_model
|
|
|
|
|
18 |
import urllib.request
|
19 |
import shutil
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class CNNDeepfakeDetector:
|
22 |
def __init__(self):
|
23 |
-
|
24 |
-
|
25 |
-
# Initialize CNN model for deepfake detection
|
26 |
-
with st.spinner("Loading CNN deepfake detection model..."):
|
27 |
-
try:
|
28 |
-
self.model = load_model('cnn_model.h5')
|
29 |
-
st.success("CNN model loaded successfully!")
|
30 |
-
except Exception as e:
|
31 |
-
st.error(f"Error loading CNN model: {e}")
|
32 |
-
st.warning("Please make sure 'cnn_model.h5' is in the current directory.")
|
33 |
-
self.model = None
|
34 |
-
|
35 |
-
def classify_image(self, face_img):
|
36 |
-
"""Classify a face image as real or fake using CNN model"""
|
37 |
-
try:
|
38 |
-
if self.model is None:
|
39 |
-
return "Model Not Loaded", 0.0
|
40 |
-
|
41 |
-
# Resize to target size
|
42 |
-
img_resized = cv2.resize(face_img, (128, 128))
|
43 |
-
|
44 |
-
# Preprocess the image
|
45 |
-
img_array = img_resized / 255.0
|
46 |
-
img_array = np.expand_dims(img_array, axis=0)
|
47 |
-
|
48 |
-
# Make prediction
|
49 |
-
prediction = self.model.predict(img_array)
|
50 |
-
confidence = float(prediction[0][0])
|
51 |
-
|
52 |
-
# In this model, <0.5 means Real, >=0.5 means Fake
|
53 |
-
label = 'Real' if confidence < 0.5 else 'Fake'
|
54 |
-
|
55 |
-
# Adjust confidence to be relative to the prediction
|
56 |
-
if label == 'Fake':
|
57 |
-
confidence = confidence # Already between 0.5-1.0
|
58 |
-
else:
|
59 |
-
confidence = 1.0 - confidence # Convert 0.0-0.5 to 0.5-1.0
|
60 |
-
|
61 |
-
return label, confidence
|
62 |
-
|
63 |
-
except Exception as e:
|
64 |
-
st.error(f"Error in CNN classification: {e}")
|
65 |
-
return "Error", 0.0
|
66 |
|
67 |
class DeepfakeDetector:
|
68 |
def __init__(self):
|
69 |
st.info("Initializing Deepfake Detector... This may take a moment.")
|
70 |
-
|
71 |
-
#
|
72 |
with st.spinner("Loading deepfake detection model..."):
|
73 |
-
self.image_processor =
|
74 |
-
|
75 |
-
|
76 |
-
'Adieee5/deepfake-detection-f3net-cross')
|
77 |
-
|
78 |
-
# Face detection model setup
|
79 |
with st.spinner("Loading face detection model..."):
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
self.use_dnn = True
|
88 |
-
st.success("Using DNN face detector (better for close-up faces)")
|
89 |
-
except Exception as e:
|
90 |
-
st.warning(f"Could not load DNN model: {e}")
|
91 |
-
self.use_dnn = False
|
92 |
-
|
93 |
-
if not self.use_dnn:
|
94 |
-
# Fallback to Haar cascade
|
95 |
-
cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
96 |
-
if os.path.exists(cascade_path):
|
97 |
-
self.face_cascade = cv2.CascadeClassifier(cascade_path)
|
98 |
st.warning("Using Haar cascade face detector as fallback")
|
99 |
else:
|
100 |
-
st.error(f"Cascade file not found
|
101 |
|
102 |
-
# Initialize CNN
|
103 |
self.cnn_detector = CNNDeepfakeDetector()
|
104 |
|
105 |
# Face tracking/smoothing parameters
|
106 |
-
self.face_history = {}
|
107 |
-
self.face_history_max_size = 10
|
108 |
-
self.face_ttl = 5
|
109 |
-
self.next_face_id = 0
|
110 |
-
|
111 |
-
# Result smoothing
|
112 |
-
self.result_buffer_size = 5 # Number of classifications to average
|
113 |
-
|
114 |
-
# Performance metrics
|
115 |
self.processing_times = deque(maxlen=30)
|
116 |
|
117 |
st.success("Models loaded successfully!")
|
118 |
|
119 |
def detect_faces_haar(self, frame):
|
120 |
-
"""Detect faces using Haar cascade"""
|
121 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
122 |
-
faces = self.face_cascade.detectMultiScale(
|
123 |
-
gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
124 |
-
|
125 |
-
# Convert to list of (x,y,w,h,confidence) format for consistency
|
126 |
return [(x, y, w, h, 0.8) for (x, y, w, h) in faces]
|
127 |
|
128 |
-
def classify_frame(self, face_img, model_type="vit"):
|
129 |
-
"""Classify a face image as real or fake"""
|
130 |
-
try:
|
131 |
-
if model_type == "cnn":
|
132 |
-
return self.cnn_detector.classify_image(face_img)
|
133 |
-
|
134 |
-
# Default to ViT model
|
135 |
-
# Resize image if too small
|
136 |
-
h, w = face_img.shape[:2]
|
137 |
-
if h < 224 or w < 224:
|
138 |
-
scale = max(224/h, 224/w)
|
139 |
-
face_img = cv2.resize(face_img, (int(w*scale), int(h*scale)))
|
140 |
-
|
141 |
-
# Make sure we have valid image data
|
142 |
-
if face_img.size == 0:
|
143 |
-
return "Unknown", 0.0
|
144 |
-
|
145 |
-
# Process with ViT model
|
146 |
-
inputs = self.image_processor(images=face_img, return_tensors="pt")
|
147 |
-
outputs = self.model(**inputs)
|
148 |
-
logits = outputs.logits
|
149 |
-
|
150 |
-
# Get prediction and confidence
|
151 |
-
probs = torch.nn.functional.softmax(logits, dim=1)
|
152 |
-
pred = torch.argmax(logits, dim=1).item()
|
153 |
-
|
154 |
-
# The model has two classes: 0=Fake, 1=Real
|
155 |
-
label = 'Real' if pred == 1 else 'Fake'
|
156 |
-
confidence = probs[0][pred].item()
|
157 |
-
|
158 |
-
return label, confidence
|
159 |
-
|
160 |
-
except Exception as e:
|
161 |
-
st.error(f"Error in classification: {e}")
|
162 |
-
return "Error", 0.0
|
163 |
-
|
164 |
def detect_faces_dnn(self, frame):
|
165 |
-
"""Detect faces using DNN method"""
|
166 |
height, width = frame.shape[:2]
|
167 |
-
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
|
168 |
-
(300, 300), (104.0, 177.0, 123.0))
|
169 |
self.face_net.setInput(blob)
|
170 |
detections = self.face_net.forward()
|
171 |
-
|
172 |
faces = []
|
173 |
for i in range(detections.shape[2]):
|
174 |
confidence = detections[0, 0, i, 2]
|
175 |
-
if confidence > 0.5:
|
176 |
box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])
|
177 |
(x1, y1, x2, y2) = box.astype("int")
|
178 |
-
# Ensure box is within frame boundaries
|
179 |
x1, y1 = max(0, x1), max(0, y1)
|
180 |
x2, y2 = min(width, x2), min(height, y2)
|
181 |
w, h = x2 - x1, y2 - y1
|
182 |
-
if w > 0 and h > 0:
|
183 |
faces.append((x1, y1, w, h, confidence))
|
184 |
-
|
185 |
return faces
|
186 |
|
187 |
def calculate_iou(self, box1, box2):
|
188 |
-
"""Calculate Intersection over Union for two boxes"""
|
189 |
-
# Convert boxes from (x, y, w, h) to (x1, y1, x2, y2)
|
190 |
box1_x1, box1_y1, box1_w, box1_h = box1
|
191 |
box2_x1, box2_y1, box2_w, box2_h = box2
|
192 |
-
|
193 |
box1_x2, box1_y2 = box1_x1 + box1_w, box1_y1 + box1_h
|
194 |
box2_x2, box2_y2 = box2_x1 + box2_w, box2_y1 + box2_h
|
195 |
-
|
196 |
-
# Calculate area of intersection rectangle
|
197 |
x_left = max(box1_x1, box2_x1)
|
198 |
y_top = max(box1_y1, box2_y1)
|
199 |
x_right = min(box1_x2, box2_x2)
|
200 |
y_bottom = min(box1_y2, box2_y2)
|
201 |
-
|
202 |
if x_right < x_left or y_bottom < y_top:
|
203 |
return 0.0
|
204 |
-
|
205 |
intersection_area = (x_right - x_left) * (y_bottom - y_top)
|
206 |
-
|
207 |
-
# Calculate area of both boxes
|
208 |
box1_area = box1_w * box1_h
|
209 |
box2_area = box2_w * box2_h
|
210 |
-
|
211 |
-
# Calculate IoU
|
212 |
-
iou = intersection_area / float(box1_area + box2_area - intersection_area)
|
213 |
-
return iou
|
214 |
|
215 |
def track_faces(self, faces):
|
216 |
matched_faces = []
|
217 |
unmatched_detections = list(range(len(faces)))
|
218 |
-
|
219 |
if not self.face_history:
|
220 |
for face in faces:
|
221 |
face_id = self.next_face_id
|
@@ -264,50 +181,28 @@ class DeepfakeDetector:
|
|
264 |
'result_history': deque(maxlen=self.result_buffer_size)
|
265 |
}
|
266 |
matched_faces.append((face_id, faces[i]))
|
267 |
-
|
268 |
return matched_faces
|
269 |
|
270 |
def smooth_face_position(self, face_id):
|
271 |
-
"""Calculate smoothed position for a tracked face"""
|
272 |
positions = self.face_history[face_id]['positions']
|
273 |
-
|
274 |
if len(positions) == 1:
|
275 |
return positions[0]
|
276 |
-
|
277 |
-
# Weight recent positions more heavily
|
278 |
total_weight = 0
|
279 |
x, y, w, h = 0, 0, 0, 0
|
280 |
-
|
281 |
for i, pos in enumerate(positions):
|
282 |
-
|
283 |
-
weight = 2 ** i # Positions are stored newest to oldest
|
284 |
total_weight += weight
|
285 |
-
|
286 |
x += pos[0] * weight
|
287 |
y += pos[1] * weight
|
288 |
w += pos[2] * weight
|
289 |
h += pos[3] * weight
|
290 |
-
|
291 |
-
# Calculate weighted average
|
292 |
-
x = int(x / total_weight)
|
293 |
-
y = int(y / total_weight)
|
294 |
-
w = int(w / total_weight)
|
295 |
-
h = int(h / total_weight)
|
296 |
-
|
297 |
-
return (x, y, w, h)
|
298 |
|
299 |
def update_face_classification(self, face_id, label, confidence):
|
300 |
-
"""Update classification history for a face"""
|
301 |
self.face_history[face_id]['result_history'].append((label, confidence))
|
302 |
-
|
303 |
-
# Calculate the smoothed result
|
304 |
-
if not self.face_history[face_id]['result_history']:
|
305 |
-
return label, confidence
|
306 |
-
|
307 |
real_votes = 0
|
308 |
fake_votes = 0
|
309 |
total_confidence = 0.0
|
310 |
-
|
311 |
for result_label, result_conf in self.face_history[face_id]['result_history']:
|
312 |
if result_label == "Real":
|
313 |
real_votes += 1
|
@@ -315,358 +210,215 @@ class DeepfakeDetector:
|
|
315 |
elif result_label == "Fake":
|
316 |
fake_votes += 1
|
317 |
total_confidence += result_conf
|
318 |
-
|
319 |
-
# Determine majority vote
|
320 |
if real_votes >= fake_votes:
|
321 |
smoothed_label = "Real"
|
322 |
label_confidence = real_votes / len(self.face_history[face_id]['result_history'])
|
323 |
else:
|
324 |
smoothed_label = "Fake"
|
325 |
label_confidence = fake_votes / len(self.face_history[face_id]['result_history'])
|
326 |
-
|
327 |
-
# Average confidence weighted by vote consistency
|
328 |
avg_confidence = (total_confidence / len(self.face_history[face_id]['result_history'])) * label_confidence
|
329 |
-
|
330 |
-
# Store the smoothed result
|
331 |
self.face_history[face_id]['label'] = smoothed_label
|
332 |
self.face_history[face_id]['confidence'] = avg_confidence
|
333 |
-
|
334 |
return smoothed_label, avg_confidence
|
335 |
|
336 |
def process_video(self, video_path, stframe, status_text, progress_bar, detector_type="dnn", model_type="vit"):
|
337 |
-
"""Process video with Streamlit output"""
|
338 |
use_dnn_current = detector_type == "dnn" and self.use_dnn
|
339 |
-
|
340 |
cap = cv2.VideoCapture(video_path)
|
341 |
if not cap.isOpened():
|
342 |
st.error(f"Error: Cannot open video source")
|
343 |
return
|
344 |
-
|
345 |
-
# Get video properties
|
346 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
347 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
348 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
349 |
total_frames = 250 if video_path != 0 else 0
|
350 |
-
|
351 |
-
# Display video info
|
352 |
-
if video_path != 0: # If not webcam
|
353 |
status_text.text(f"Video Info: {frame_width}x{frame_height}, {fps:.1f} FPS, {total_frames} frames")
|
354 |
else:
|
355 |
status_text.text(f"Webcam: {frame_width}x{frame_height}")
|
356 |
-
|
357 |
-
# Reset tracking data for new video
|
358 |
self.face_history = {}
|
359 |
self.next_face_id = 0
|
360 |
self.processing_times = deque(maxlen=30)
|
361 |
-
|
362 |
frame_count = 0
|
363 |
-
process_every_n_frames = 2
|
364 |
-
|
365 |
-
# For face detection stats
|
366 |
face_stats = {"Real": 0, "Fake": 0, "Unknown": 0}
|
367 |
|
368 |
-
# Main processing loop
|
369 |
while True:
|
370 |
start_time = time.time()
|
371 |
-
|
372 |
ret, frame = cap.read()
|
373 |
if not ret:
|
374 |
status_text.text("End of video reached")
|
375 |
break
|
376 |
-
|
377 |
frame_count += 1
|
378 |
-
|
379 |
if frame_count == 250:
|
380 |
st.success("Video Processed Successfully!")
|
381 |
break
|
382 |
-
|
383 |
-
if video_path != 0: # If not webcam, update progress
|
384 |
progress = min(float(frame_count) / float(max(total_frames, 1)), 1.0)
|
385 |
progress_bar.progress(progress)
|
386 |
-
|
387 |
process_frame = (frame_count % process_every_n_frames == 0)
|
388 |
-
|
389 |
-
# Store original frame for face extraction
|
390 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
391 |
|
392 |
if process_frame:
|
393 |
-
|
394 |
-
if use_dnn_current:
|
395 |
-
faces = self.detect_faces_dnn(frame)
|
396 |
-
else:
|
397 |
-
faces = self.detect_faces_haar(frame)
|
398 |
-
|
399 |
-
# Track faces across frames
|
400 |
tracked_faces = self.track_faces(faces)
|
401 |
-
|
402 |
-
|
403 |
for face_id, (x, y, w, h, face_confidence) in tracked_faces:
|
404 |
-
if face_id
|
405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
|
|
|
|
407 |
sx, sy, sw, sh = self.smooth_face_position(face_id)
|
408 |
-
# Draw rectangle around face with smoothed coordinates
|
409 |
cv2.rectangle(frame, (sx, sy), (sx+sw, sy+sh), (0, 255, 255), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
-
# Only process classification for real detections (not predicted)
|
412 |
-
if w > 20 and h > 20 and face_id in self.face_history:
|
413 |
-
try:
|
414 |
-
# Extract face using smoothed coordinates for better consistency
|
415 |
-
face = frame_rgb[sy:sy+sh, sx:sx+sw]
|
416 |
-
|
417 |
-
# Skip processing if face is too small after smoothing
|
418 |
-
if face.size == 0 or face.shape[0] < 20 or face.shape[1] < 20:
|
419 |
-
continue
|
420 |
-
|
421 |
-
# Process only every N frames or if this is a new face
|
422 |
-
if frame_count % process_every_n_frames == 0 or \
|
423 |
-
len(self.face_history[face_id]['result_history']) == 0:
|
424 |
-
# Classify the face using the selected model
|
425 |
-
label, confidence = self.classify_frame(face, model_type)
|
426 |
-
|
427 |
-
# Update and smooth results
|
428 |
-
label, confidence = self.update_face_classification(face_id, label, confidence)
|
429 |
-
else:
|
430 |
-
# Use last stored result
|
431 |
-
label = self.face_history[face_id]['label'] or "Unknown"
|
432 |
-
confidence = self.face_history[face_id]['confidence']
|
433 |
-
|
434 |
-
# Update stats
|
435 |
-
if label in face_stats:
|
436 |
-
face_stats[label] += 1
|
437 |
-
|
438 |
-
# Display results
|
439 |
-
result_text = f"{label}: {confidence:.2f}"
|
440 |
-
text_color = (0, 255, 0) if label == "Real" else (0, 0, 255)
|
441 |
-
|
442 |
-
# Add text background for better visibility
|
443 |
-
cv2.rectangle(frame, (sx, sy+sh), (sx+len(result_text)*11, sy+sh+25), (0, 0, 0), -1)
|
444 |
-
cv2.putText(frame, result_text, (sx, sy+sh+20),
|
445 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.7, text_color, 2)
|
446 |
-
|
447 |
-
# Draw face ID
|
448 |
-
cv2.putText(frame, f"ID:{face_id}", (sx, sy-5),
|
449 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)
|
450 |
-
except Exception as e:
|
451 |
-
st.error(f"Error processing face: {e}")
|
452 |
-
|
453 |
-
# Measure processing time
|
454 |
process_time = time.time() - start_time
|
455 |
self.processing_times.append(process_time)
|
456 |
avg_time = sum(self.processing_times) / len(self.processing_times)
|
457 |
effective_fps = 1.0 / avg_time if avg_time > 0 else 0
|
458 |
|
459 |
-
|
460 |
-
if video_path != 0: # If not webcam
|
461 |
progress_percent = (frame_count / total_frames) * 100 if total_frames > 0 else 0
|
462 |
cv2.putText(frame, f"Frame: {frame_count}/{total_frames} ({progress_percent:.1f}%)",
|
463 |
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
464 |
else:
|
465 |
cv2.putText(frame, f"Frame: {frame_count}",
|
466 |
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
467 |
-
|
468 |
-
# Show detector info and performance
|
469 |
detector_name = "DNN" if use_dnn_current else "Haar Cascade"
|
470 |
model_name = "ViT" if model_type == "vit" else "CNN"
|
471 |
cv2.putText(frame, f"Detector: {detector_name} | Model: {model_name} | FPS: {effective_fps:.1f}",
|
472 |
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
473 |
-
|
474 |
-
# Show tracking info
|
475 |
cv2.putText(frame, f"Tracked faces: {len(self.face_history)}",
|
476 |
(10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
477 |
-
|
478 |
-
# Display the frame in Streamlit
|
479 |
stframe.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB")
|
480 |
-
|
481 |
-
# Update stats
|
482 |
status_text.text(f"Real: {face_stats['Real']} | Fake: {face_stats['Fake']} | FPS: {effective_fps:.1f}")
|
483 |
-
|
484 |
-
# Check if stop button is pressed
|
485 |
if st.session_state.get('stop_button', False):
|
486 |
break
|
487 |
-
|
488 |
-
# Clean up
|
489 |
cap.release()
|
490 |
return face_stats
|
491 |
|
492 |
-
# Function to ensure sample video exists
|
493 |
def ensure_sample_video():
|
494 |
sample_dir = "sample_videos"
|
495 |
sample_path = os.path.join(sample_dir, "Sample.mp4")
|
496 |
-
|
497 |
-
# Create directory if it doesn't exist
|
498 |
if not os.path.exists(sample_dir):
|
499 |
os.makedirs(sample_dir)
|
500 |
-
|
501 |
-
# If sample video doesn't exist, download it
|
502 |
if not os.path.exists(sample_path):
|
503 |
try:
|
504 |
with st.spinner("Downloading sample video..."):
|
505 |
-
# URL to a public domain sample video that contains faces
|
506 |
sample_url = "https://storage.googleapis.com/deepfake-demo/sample_deepfake.mp4"
|
507 |
-
|
508 |
-
# Download the file
|
509 |
with urllib.request.urlopen(sample_url) as response, open(sample_path, 'wb') as out_file:
|
510 |
shutil.copyfileobj(response, out_file)
|
511 |
-
|
512 |
st.success("Sample video downloaded successfully!")
|
513 |
except Exception as e:
|
514 |
st.error(f"Failed to download sample video: {e}")
|
515 |
return None
|
516 |
-
|
517 |
return sample_path
|
518 |
|
519 |
def main():
|
520 |
st.set_page_config(page_title="Deepfake Detector", layout="wide")
|
521 |
-
|
522 |
-
# App title and description
|
523 |
st.title("Deepfake Detection App")
|
524 |
st.markdown("""
|
525 |
This app uses computer vision and deep learning to detect deepfake videos.
|
526 |
Upload a video or use your webcam to detect if faces are real or manipulated.
|
527 |
""")
|
528 |
|
529 |
-
# Initialize session state for the detector and variables
|
530 |
if 'detector' not in st.session_state:
|
531 |
st.session_state.detector = None
|
532 |
-
|
533 |
if 'stop_button' not in st.session_state:
|
534 |
st.session_state.stop_button = False
|
535 |
-
|
536 |
if 'use_sample' not in st.session_state:
|
537 |
st.session_state.use_sample = False
|
538 |
-
|
539 |
if 'sample_path' not in st.session_state:
|
540 |
st.session_state.sample_path = None
|
541 |
|
542 |
-
# Initialize the detector
|
543 |
if st.session_state.detector is None:
|
544 |
st.session_state.detector = DeepfakeDetector()
|
545 |
|
546 |
-
# Create sidebar for options
|
547 |
st.sidebar.title("Options")
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
["Upload Video", "Use Webcam", "Try Sample Video"]
|
552 |
-
)
|
553 |
-
|
554 |
-
detector_type = st.sidebar.selectbox(
|
555 |
-
"Face Detector",
|
556 |
-
["DNN (better for close-ups)", "Haar Cascade (faster)"],
|
557 |
-
index=0 if st.session_state.detector.use_dnn else 1
|
558 |
-
)
|
559 |
detector_option = "dnn" if "DNN" in detector_type else "haar"
|
560 |
-
|
561 |
-
# Model selection option
|
562 |
-
model_type = st.sidebar.selectbox(
|
563 |
-
"Deepfake Detection Model",
|
564 |
-
["Vision Transformer (ViT)", "F3 Net Model"],
|
565 |
-
index=0
|
566 |
-
)
|
567 |
model_option = "vit" if "Vision" in model_type else "cnn"
|
568 |
|
569 |
-
# Main content area
|
570 |
col1, col2 = st.columns([3, 1])
|
571 |
-
|
572 |
with col1:
|
573 |
-
# Video display area
|
574 |
video_placeholder = st.empty()
|
575 |
-
|
576 |
with col2:
|
577 |
-
# Status and controls
|
578 |
status_text = st.empty()
|
579 |
progress_bar = st.empty()
|
580 |
-
|
581 |
-
# Results section
|
582 |
st.subheader("Results")
|
583 |
results_area = st.empty()
|
584 |
-
|
585 |
-
# Stop button
|
586 |
if st.button("Stop Processing"):
|
587 |
st.session_state.stop_button = True
|
588 |
|
589 |
-
# Process based on selected option
|
590 |
if input_option == "Upload Video":
|
591 |
uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "mkv"])
|
592 |
-
|
593 |
if uploaded_file is not None:
|
594 |
st.session_state.stop_button = False
|
595 |
-
|
596 |
-
# Save uploaded file to temp file
|
597 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
598 |
tfile.write(uploaded_file.read())
|
599 |
video_path = tfile.name
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
video_path,
|
604 |
-
video_placeholder,
|
605 |
-
status_text,
|
606 |
-
progress_bar,
|
607 |
-
detector_option,
|
608 |
-
model_option
|
609 |
-
)
|
610 |
-
|
611 |
-
# Display results
|
612 |
-
results_df = {
|
613 |
-
"Category": ["Real Faces", "Fake Faces"],
|
614 |
-
"Count": [face_stats["Real"], face_stats["Fake"]]
|
615 |
-
}
|
616 |
results_area.dataframe(results_df)
|
617 |
-
|
618 |
-
# Clean up temp file
|
619 |
os.unlink(video_path)
|
620 |
-
|
621 |
elif input_option == "Use Webcam":
|
622 |
-
# Reset stop button
|
623 |
st.session_state.stop_button = False
|
624 |
-
|
625 |
if st.sidebar.button("Start Webcam"):
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
video_placeholder,
|
630 |
-
status_text,
|
631 |
-
progress_bar,
|
632 |
-
detector_option,
|
633 |
-
model_option
|
634 |
-
)
|
635 |
-
|
636 |
-
# Display results after stopping
|
637 |
-
results_df = {
|
638 |
-
"Category": ["Real Faces", "Fake Faces"],
|
639 |
-
"Count": [face_stats["Real"], face_stats["Fake"]]
|
640 |
-
}
|
641 |
results_area.dataframe(results_df)
|
642 |
-
|
643 |
elif input_option == "Try Sample Video":
|
644 |
-
# Reset stop button
|
645 |
st.session_state.stop_button = False
|
646 |
-
|
647 |
-
# Get or download the sample video
|
648 |
sample_path = ensure_sample_video()
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
sample_path,
|
655 |
-
video_placeholder,
|
656 |
-
status_text,
|
657 |
-
progress_bar,
|
658 |
-
detector_option,
|
659 |
-
model_option
|
660 |
-
)
|
661 |
-
|
662 |
-
# Display results
|
663 |
-
results_df = {
|
664 |
-
"Category": ["Real Faces", "Fake Faces"],
|
665 |
-
"Count": [face_stats["Real"], face_stats["Fake"]]
|
666 |
-
}
|
667 |
-
results_area.dataframe(results_df)
|
668 |
-
else:
|
669 |
-
st.sidebar.error("Failed to load sample video. Please try uploading your own video instead.")
|
670 |
|
671 |
if __name__ == "__main__":
|
672 |
-
main()
|
|
|
1 |
+
import os
|
2 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # Disable oneDNN to avoid numerical differences warning
|
3 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow logs except critical errors
|
4 |
+
|
5 |
+
import logging
|
6 |
+
logging.getLogger('tensorflow').setLevel(logging.ERROR) # Further suppress TensorFlow warnings
|
7 |
+
|
8 |
import altair as alt
|
9 |
import numpy as np
|
10 |
import pandas as pd
|
|
|
|
|
11 |
import streamlit as st
|
12 |
import cv2
|
13 |
import torch
|
|
|
|
|
|
|
|
|
14 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
15 |
from collections import deque
|
16 |
import tensorflow as tf
|
|
|
17 |
from tensorflow.keras.models import load_model
|
18 |
+
import tempfile
|
19 |
+
import time
|
20 |
import urllib.request
|
21 |
import shutil
|
22 |
|
23 |
+
# Cached model loading functions
|
24 |
+
@st.cache_resource
|
25 |
+
def load_cnn_model():
|
26 |
+
try:
|
27 |
+
model = load_model('cnn_model.h5')
|
28 |
+
st.success("CNN model loaded successfully!")
|
29 |
+
return model
|
30 |
+
except Exception as e:
|
31 |
+
st.error(f"Error loading CNN model: {e}")
|
32 |
+
st.warning("Please make sure 'cnn_model.h5' is in the current directory.")
|
33 |
+
return None
|
34 |
+
|
35 |
+
@st.cache_resource
|
36 |
+
def load_vit_components():
|
37 |
+
image_processor = AutoImageProcessor.from_pretrained('Adieee5/deepfake-detection-f3net-cross', use_fast=True)
|
38 |
+
model = AutoModelForImageClassification.from_pretrained('Adieee5/deepfake-detection-f3net-cross')
|
39 |
+
return image_processor, model
|
40 |
+
|
41 |
+
@st.cache_resource
|
42 |
+
def load_face_net():
|
43 |
+
model_file = "deploy.prototxt"
|
44 |
+
weights_file = "res10_300x300_ssd_iter_140000.caffemodel"
|
45 |
+
if os.path.exists(model_file) and os.path.exists(weights_file):
|
46 |
+
return cv2.dnn.readNetFromCaffe(model_file, weights_file)
|
47 |
+
return None
|
48 |
+
|
49 |
+
@st.cache_resource
|
50 |
+
def load_haar_cascade():
|
51 |
+
cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
52 |
+
if os.path.exists(cascade_path):
|
53 |
+
return cv2.CascadeClassifier(cascade_path)
|
54 |
+
return None
|
55 |
+
|
56 |
class CNNDeepfakeDetector:
|
57 |
def __init__(self):
|
58 |
+
self.model = load_cnn_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
class DeepfakeDetector:
|
61 |
def __init__(self):
|
62 |
st.info("Initializing Deepfake Detector... This may take a moment.")
|
63 |
+
|
64 |
+
# Load ViT components
|
65 |
with st.spinner("Loading deepfake detection model..."):
|
66 |
+
self.image_processor, self.model = load_vit_components()
|
67 |
+
|
68 |
+
# Load face detection models
|
|
|
|
|
|
|
69 |
with st.spinner("Loading face detection model..."):
|
70 |
+
self.face_net = load_face_net()
|
71 |
+
self.use_dnn = self.face_net is not None
|
72 |
+
if self.use_dnn:
|
73 |
+
st.success("Using DNN face detector (better for close-up faces)")
|
74 |
+
else:
|
75 |
+
self.face_cascade = load_haar_cascade()
|
76 |
+
if self.face_cascade:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
st.warning("Using Haar cascade face detector as fallback")
|
78 |
else:
|
79 |
+
st.error(f"Cascade file not found")
|
80 |
|
81 |
+
# Initialize CNN detector
|
82 |
self.cnn_detector = CNNDeepfakeDetector()
|
83 |
|
84 |
# Face tracking/smoothing parameters
|
85 |
+
self.face_history = {}
|
86 |
+
self.face_history_max_size = 10
|
87 |
+
self.face_ttl = 5
|
88 |
+
self.next_face_id = 0
|
89 |
+
self.result_buffer_size = 5
|
|
|
|
|
|
|
|
|
90 |
self.processing_times = deque(maxlen=30)
|
91 |
|
92 |
st.success("Models loaded successfully!")
|
93 |
|
94 |
def detect_faces_haar(self, frame):
|
|
|
95 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
96 |
+
faces = self.face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
|
|
|
|
|
|
97 |
return [(x, y, w, h, 0.8) for (x, y, w, h) in faces]
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def detect_faces_dnn(self, frame):
|
|
|
100 |
height, width = frame.shape[:2]
|
101 |
+
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
|
|
|
102 |
self.face_net.setInput(blob)
|
103 |
detections = self.face_net.forward()
|
|
|
104 |
faces = []
|
105 |
for i in range(detections.shape[2]):
|
106 |
confidence = detections[0, 0, i, 2]
|
107 |
+
if confidence > 0.5:
|
108 |
box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])
|
109 |
(x1, y1, x2, y2) = box.astype("int")
|
|
|
110 |
x1, y1 = max(0, x1), max(0, y1)
|
111 |
x2, y2 = min(width, x2), min(height, y2)
|
112 |
w, h = x2 - x1, y2 - y1
|
113 |
+
if w > 0 and h > 0:
|
114 |
faces.append((x1, y1, w, h, confidence))
|
|
|
115 |
return faces
|
116 |
|
117 |
def calculate_iou(self, box1, box2):
|
|
|
|
|
118 |
box1_x1, box1_y1, box1_w, box1_h = box1
|
119 |
box2_x1, box2_y1, box2_w, box2_h = box2
|
|
|
120 |
box1_x2, box1_y2 = box1_x1 + box1_w, box1_y1 + box1_h
|
121 |
box2_x2, box2_y2 = box2_x1 + box2_w, box2_y1 + box2_h
|
|
|
|
|
122 |
x_left = max(box1_x1, box2_x1)
|
123 |
y_top = max(box1_y1, box2_y1)
|
124 |
x_right = min(box1_x2, box2_x2)
|
125 |
y_bottom = min(box1_y2, box2_y2)
|
|
|
126 |
if x_right < x_left or y_bottom < y_top:
|
127 |
return 0.0
|
|
|
128 |
intersection_area = (x_right - x_left) * (y_bottom - y_top)
|
|
|
|
|
129 |
box1_area = box1_w * box1_h
|
130 |
box2_area = box2_w * box2_h
|
131 |
+
return intersection_area / float(box1_area + box2_area - intersection_area)
|
|
|
|
|
|
|
132 |
|
133 |
def track_faces(self, faces):
|
134 |
matched_faces = []
|
135 |
unmatched_detections = list(range(len(faces)))
|
|
|
136 |
if not self.face_history:
|
137 |
for face in faces:
|
138 |
face_id = self.next_face_id
|
|
|
181 |
'result_history': deque(maxlen=self.result_buffer_size)
|
182 |
}
|
183 |
matched_faces.append((face_id, faces[i]))
|
|
|
184 |
return matched_faces
|
185 |
|
186 |
def smooth_face_position(self, face_id):
|
|
|
187 |
positions = self.face_history[face_id]['positions']
|
|
|
188 |
if len(positions) == 1:
|
189 |
return positions[0]
|
|
|
|
|
190 |
total_weight = 0
|
191 |
x, y, w, h = 0, 0, 0, 0
|
|
|
192 |
for i, pos in enumerate(positions):
|
193 |
+
weight = 2 ** i
|
|
|
194 |
total_weight += weight
|
|
|
195 |
x += pos[0] * weight
|
196 |
y += pos[1] * weight
|
197 |
w += pos[2] * weight
|
198 |
h += pos[3] * weight
|
199 |
+
return (int(x / total_weight), int(y / total_weight), int(w / total_weight), int(h / total_weight))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
def update_face_classification(self, face_id, label, confidence):
|
|
|
202 |
self.face_history[face_id]['result_history'].append((label, confidence))
|
|
|
|
|
|
|
|
|
|
|
203 |
real_votes = 0
|
204 |
fake_votes = 0
|
205 |
total_confidence = 0.0
|
|
|
206 |
for result_label, result_conf in self.face_history[face_id]['result_history']:
|
207 |
if result_label == "Real":
|
208 |
real_votes += 1
|
|
|
210 |
elif result_label == "Fake":
|
211 |
fake_votes += 1
|
212 |
total_confidence += result_conf
|
|
|
|
|
213 |
if real_votes >= fake_votes:
|
214 |
smoothed_label = "Real"
|
215 |
label_confidence = real_votes / len(self.face_history[face_id]['result_history'])
|
216 |
else:
|
217 |
smoothed_label = "Fake"
|
218 |
label_confidence = fake_votes / len(self.face_history[face_id]['result_history'])
|
|
|
|
|
219 |
avg_confidence = (total_confidence / len(self.face_history[face_id]['result_history'])) * label_confidence
|
|
|
|
|
220 |
self.face_history[face_id]['label'] = smoothed_label
|
221 |
self.face_history[face_id]['confidence'] = avg_confidence
|
|
|
222 |
return smoothed_label, avg_confidence
|
223 |
|
224 |
def process_video(self, video_path, stframe, status_text, progress_bar, detector_type="dnn", model_type="vit"):
|
|
|
225 |
use_dnn_current = detector_type == "dnn" and self.use_dnn
|
|
|
226 |
cap = cv2.VideoCapture(video_path)
|
227 |
if not cap.isOpened():
|
228 |
st.error(f"Error: Cannot open video source")
|
229 |
return
|
|
|
|
|
230 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
231 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
232 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
233 |
total_frames = 250 if video_path != 0 else 0
|
234 |
+
if video_path != 0:
|
|
|
|
|
235 |
status_text.text(f"Video Info: {frame_width}x{frame_height}, {fps:.1f} FPS, {total_frames} frames")
|
236 |
else:
|
237 |
status_text.text(f"Webcam: {frame_width}x{frame_height}")
|
|
|
|
|
238 |
self.face_history = {}
|
239 |
self.next_face_id = 0
|
240 |
self.processing_times = deque(maxlen=30)
|
|
|
241 |
frame_count = 0
|
242 |
+
process_every_n_frames = 2
|
|
|
|
|
243 |
face_stats = {"Real": 0, "Fake": 0, "Unknown": 0}
|
244 |
|
|
|
245 |
while True:
|
246 |
start_time = time.time()
|
|
|
247 |
ret, frame = cap.read()
|
248 |
if not ret:
|
249 |
status_text.text("End of video reached")
|
250 |
break
|
|
|
251 |
frame_count += 1
|
|
|
252 |
if frame_count == 250:
|
253 |
st.success("Video Processed Successfully!")
|
254 |
break
|
255 |
+
if video_path != 0:
|
|
|
256 |
progress = min(float(frame_count) / float(max(total_frames, 1)), 1.0)
|
257 |
progress_bar.progress(progress)
|
|
|
258 |
process_frame = (frame_count % process_every_n_frames == 0)
|
|
|
|
|
259 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
260 |
|
261 |
if process_frame:
|
262 |
+
faces = self.detect_faces_dnn(frame) if use_dnn_current else self.detect_faces_haar(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
tracked_faces = self.track_faces(faces)
|
264 |
+
face_images = []
|
265 |
+
face_ids = []
|
266 |
for face_id, (x, y, w, h, face_confidence) in tracked_faces:
|
267 |
+
if face_id in self.face_history and w > 20 and h > 20:
|
268 |
+
sx, sy, sw, sh = self.smooth_face_position(face_id)
|
269 |
+
face = frame_rgb[sy:sy+sh, sx:sx+sw]
|
270 |
+
if face.size > 0 and face.shape[0] >= 20 and face.shape[1] >= 20:
|
271 |
+
face_images.append(face)
|
272 |
+
face_ids.append(face_id)
|
273 |
+
if face_images:
|
274 |
+
if model_type == "vit":
|
275 |
+
inputs = self.image_processor(images=face_images, return_tensors="pt")
|
276 |
+
with torch.no_grad():
|
277 |
+
outputs = self.model(**inputs)
|
278 |
+
logits = outputs.logits
|
279 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
280 |
+
preds = torch.argmax(logits, dim=1)
|
281 |
+
for i, pred in enumerate(preds):
|
282 |
+
label = 'Real' if pred.item() == 1 else 'Fake'
|
283 |
+
confidence = probs[i][pred].item()
|
284 |
+
self.update_face_classification(face_ids[i], label, confidence)
|
285 |
+
elif model_type == "cnn" and self.cnn_detector.model is not None:
|
286 |
+
img_arrays = [cv2.resize(face, (128, 128)) / 255.0 for face in face_images]
|
287 |
+
img_batch = np.array(img_arrays)
|
288 |
+
predictions = self.cnn_detector.model.predict(img_batch)
|
289 |
+
for i, prediction in enumerate(predictions):
|
290 |
+
confidence = float(prediction[0])
|
291 |
+
label = 'Real' if confidence < 0.5 else 'Fake'
|
292 |
+
if label == 'Fake':
|
293 |
+
confidence = confidence
|
294 |
+
else:
|
295 |
+
confidence = 1.0 - confidence
|
296 |
+
self.update_face_classification(face_ids[i], label, confidence)
|
297 |
|
298 |
+
for face_id in self.face_history:
|
299 |
+
if self.face_history[face_id]['ttl'] > 0:
|
300 |
sx, sy, sw, sh = self.smooth_face_position(face_id)
|
|
|
301 |
cv2.rectangle(frame, (sx, sy), (sx+sw, sy+sh), (0, 255, 255), 2)
|
302 |
+
label = self.face_history[face_id]['label'] or "Unknown"
|
303 |
+
confidence = self.face_history[face_id]['confidence']
|
304 |
+
result_text = f"{label}: {confidence:.2f}"
|
305 |
+
text_color = (0, 255, 0) if label == "Real" else (0, 0, 255)
|
306 |
+
cv2.rectangle(frame, (sx, sy+sh), (sx+len(result_text)*11, sy+sh+25), (0, 0, 0), -1)
|
307 |
+
cv2.putText(frame, result_text, (sx, sy+sh+20),
|
308 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, text_color, 2)
|
309 |
+
cv2.putText(frame, f"ID:{face_id}", (sx, sy-5),
|
310 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)
|
311 |
+
if label in face_stats:
|
312 |
+
face_stats[label] += 1
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
process_time = time.time() - start_time
|
315 |
self.processing_times.append(process_time)
|
316 |
avg_time = sum(self.processing_times) / len(self.processing_times)
|
317 |
effective_fps = 1.0 / avg_time if avg_time > 0 else 0
|
318 |
|
319 |
+
if video_path != 0:
|
|
|
320 |
progress_percent = (frame_count / total_frames) * 100 if total_frames > 0 else 0
|
321 |
cv2.putText(frame, f"Frame: {frame_count}/{total_frames} ({progress_percent:.1f}%)",
|
322 |
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
323 |
else:
|
324 |
cv2.putText(frame, f"Frame: {frame_count}",
|
325 |
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
|
|
|
|
326 |
detector_name = "DNN" if use_dnn_current else "Haar Cascade"
|
327 |
model_name = "ViT" if model_type == "vit" else "CNN"
|
328 |
cv2.putText(frame, f"Detector: {detector_name} | Model: {model_name} | FPS: {effective_fps:.1f}",
|
329 |
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
|
|
|
|
330 |
cv2.putText(frame, f"Tracked faces: {len(self.face_history)}",
|
331 |
(10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
|
|
|
|
332 |
stframe.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB")
|
|
|
|
|
333 |
status_text.text(f"Real: {face_stats['Real']} | Fake: {face_stats['Fake']} | FPS: {effective_fps:.1f}")
|
|
|
|
|
334 |
if st.session_state.get('stop_button', False):
|
335 |
break
|
|
|
|
|
336 |
cap.release()
|
337 |
return face_stats
|
338 |
|
|
|
339 |
def ensure_sample_video():
|
340 |
sample_dir = "sample_videos"
|
341 |
sample_path = os.path.join(sample_dir, "Sample.mp4")
|
|
|
|
|
342 |
if not os.path.exists(sample_dir):
|
343 |
os.makedirs(sample_dir)
|
|
|
|
|
344 |
if not os.path.exists(sample_path):
|
345 |
try:
|
346 |
with st.spinner("Downloading sample video..."):
|
|
|
347 |
sample_url = "https://storage.googleapis.com/deepfake-demo/sample_deepfake.mp4"
|
|
|
|
|
348 |
with urllib.request.urlopen(sample_url) as response, open(sample_path, 'wb') as out_file:
|
349 |
shutil.copyfileobj(response, out_file)
|
|
|
350 |
st.success("Sample video downloaded successfully!")
|
351 |
except Exception as e:
|
352 |
st.error(f"Failed to download sample video: {e}")
|
353 |
return None
|
|
|
354 |
return sample_path
|
355 |
|
356 |
def main():
|
357 |
st.set_page_config(page_title="Deepfake Detector", layout="wide")
|
|
|
|
|
358 |
st.title("Deepfake Detection App")
|
359 |
st.markdown("""
|
360 |
This app uses computer vision and deep learning to detect deepfake videos.
|
361 |
Upload a video or use your webcam to detect if faces are real or manipulated.
|
362 |
""")
|
363 |
|
|
|
364 |
if 'detector' not in st.session_state:
|
365 |
st.session_state.detector = None
|
|
|
366 |
if 'stop_button' not in st.session_state:
|
367 |
st.session_state.stop_button = False
|
|
|
368 |
if 'use_sample' not in st.session_state:
|
369 |
st.session_state.use_sample = False
|
|
|
370 |
if 'sample_path' not in st.session_state:
|
371 |
st.session_state.sample_path = None
|
372 |
|
|
|
373 |
if st.session_state.detector is None:
|
374 |
st.session_state.detector = DeepfakeDetector()
|
375 |
|
|
|
376 |
st.sidebar.title("Options")
|
377 |
+
input_option = st.sidebar.radio("Select Input Source", ["Upload Video", "Use Webcam", "Try Sample Video"])
|
378 |
+
detector_type = st.sidebar.selectbox("Face Detector", ["DNN (better for close-ups)", "Haar Cascade (faster)"],
|
379 |
+
index=0 if st.session_state.detector.use_dnn else 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
detector_option = "dnn" if "DNN" in detector_type else "haar"
|
381 |
+
model_type = st.sidebar.selectbox("Deepfake Detection Model", ["Vision Transformer (ViT)", "F3 Net Model"], index=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
model_option = "vit" if "Vision" in model_type else "cnn"
|
383 |
|
|
|
384 |
col1, col2 = st.columns([3, 1])
|
|
|
385 |
with col1:
|
|
|
386 |
video_placeholder = st.empty()
|
|
|
387 |
with col2:
|
|
|
388 |
status_text = st.empty()
|
389 |
progress_bar = st.empty()
|
|
|
|
|
390 |
st.subheader("Results")
|
391 |
results_area = st.empty()
|
|
|
|
|
392 |
if st.button("Stop Processing"):
|
393 |
st.session_state.stop_button = True
|
394 |
|
|
|
395 |
if input_option == "Upload Video":
|
396 |
uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "mkv"])
|
|
|
397 |
if uploaded_file is not None:
|
398 |
st.session_state.stop_button = False
|
|
|
|
|
399 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
400 |
tfile.write(uploaded_file.read())
|
401 |
video_path = tfile.name
|
402 |
+
face_stats = st.session_state.detector.process_video(video_path, video_placeholder, status_text,
|
403 |
+
progress_bar, detector_option, model_option)
|
404 |
+
results_df = {"Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
results_area.dataframe(results_df)
|
|
|
|
|
406 |
os.unlink(video_path)
|
|
|
407 |
elif input_option == "Use Webcam":
|
|
|
408 |
st.session_state.stop_button = False
|
|
|
409 |
if st.sidebar.button("Start Webcam"):
|
410 |
+
face_stats = st.session_state.detector.process_video(0, video_placeholder, status_text, progress_bar,
|
411 |
+
detector_option, model_option)
|
412 |
+
results_df = {"Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
results_area.dataframe(results_df)
|
|
|
414 |
elif input_option == "Try Sample Video":
|
|
|
415 |
st.session_state.stop_button = False
|
|
|
|
|
416 |
sample_path = ensure_sample_video()
|
417 |
+
if sample_path and st.sidebar.button("Process Sample Video"):
|
418 |
+
face_stats = st.session_state.detector.process_video(sample_path, video_placeholder, status_text,
|
419 |
+
progress_bar, detector_option, model_option)
|
420 |
+
results_df = {"Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]]}
|
421 |
+
results_area.dataframe(results_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
if __name__ == "__main__":
|
424 |
+
main()
|