Upload 8 files
Browse files- .gitattributes +2 -0
- app.py +672 -0
- cnn_model.h5 +3 -0
- deploy.prototxt +1790 -0
- face_detection_yunet_2023mar.onnx +3 -0
- haarcascade_frontalface_default.xml +0 -0
- requirements.txt +70 -0
- res10_300x300_ssd_iter_140000.caffemodel +3 -0
- sample_videos/Sample.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
res10_300x300_ssd_iter_140000.caffemodel filter=lfs diff=lfs merge=lfs -text
|
37 |
+
sample_videos/Sample.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import altair as alt
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
import streamlit as st
|
7 |
+
import cv2
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
import tempfile
|
12 |
+
import time
|
13 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
14 |
+
from collections import deque
|
15 |
+
import tensorflow as tf
|
16 |
+
from tensorflow.keras.preprocessing import image
|
17 |
+
from tensorflow.keras.models import load_model
|
18 |
+
import urllib.request
|
19 |
+
import shutil
|
20 |
+
|
21 |
+
class CNNDeepfakeDetector:
|
22 |
+
def __init__(self):
|
23 |
+
st.info("Initializing CNN Deepfake Detector... This may take a moment.")
|
24 |
+
|
25 |
+
# Initialize CNN model for deepfake detection
|
26 |
+
with st.spinner("Loading CNN deepfake detection model..."):
|
27 |
+
try:
|
28 |
+
self.model = load_model('cnn_model.h5')
|
29 |
+
st.success("CNN model loaded successfully!")
|
30 |
+
except Exception as e:
|
31 |
+
st.error(f"Error loading CNN model: {e}")
|
32 |
+
st.warning("Please make sure 'cnn_model.h5' is in the current directory.")
|
33 |
+
self.model = None
|
34 |
+
|
35 |
+
def classify_image(self, face_img):
|
36 |
+
"""Classify a face image as real or fake using CNN model"""
|
37 |
+
try:
|
38 |
+
if self.model is None:
|
39 |
+
return "Model Not Loaded", 0.0
|
40 |
+
|
41 |
+
# Resize to target size
|
42 |
+
img_resized = cv2.resize(face_img, (128, 128))
|
43 |
+
|
44 |
+
# Preprocess the image
|
45 |
+
img_array = img_resized / 255.0
|
46 |
+
img_array = np.expand_dims(img_array, axis=0)
|
47 |
+
|
48 |
+
# Make prediction
|
49 |
+
prediction = self.model.predict(img_array)
|
50 |
+
confidence = float(prediction[0][0])
|
51 |
+
|
52 |
+
# In this model, <0.5 means Real, >=0.5 means Fake
|
53 |
+
label = 'Real' if confidence < 0.5 else 'Fake'
|
54 |
+
|
55 |
+
# Adjust confidence to be relative to the prediction
|
56 |
+
if label == 'Fake':
|
57 |
+
confidence = confidence # Already between 0.5-1.0
|
58 |
+
else:
|
59 |
+
confidence = 1.0 - confidence # Convert 0.0-0.5 to 0.5-1.0
|
60 |
+
|
61 |
+
return label, confidence
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
st.error(f"Error in CNN classification: {e}")
|
65 |
+
return "Error", 0.0
|
66 |
+
|
67 |
+
class DeepfakeDetector:
|
68 |
+
def __init__(self):
|
69 |
+
st.info("Initializing Deepfake Detector... This may take a moment.")
|
70 |
+
|
71 |
+
# Initialize ViT model for deepfake detection
|
72 |
+
with st.spinner("Loading deepfake detection model..."):
|
73 |
+
self.image_processor = AutoImageProcessor.from_pretrained(
|
74 |
+
'Adieee5/deepfake-detection-f3net-cross')
|
75 |
+
self.model = AutoModelForImageClassification.from_pretrained(
|
76 |
+
'Adieee5/deepfake-detection-f3net-cross')
|
77 |
+
|
78 |
+
# Face detection model setup
|
79 |
+
with st.spinner("Loading face detection model..."):
|
80 |
+
model_file = "deploy.prototxt"
|
81 |
+
weights_file = "res10_300x300_ssd_iter_140000.caffemodel"
|
82 |
+
|
83 |
+
self.use_dnn = False
|
84 |
+
if os.path.exists(model_file) and os.path.exists(weights_file):
|
85 |
+
try:
|
86 |
+
self.face_net = cv2.dnn.readNetFromCaffe(model_file, weights_file)
|
87 |
+
self.use_dnn = True
|
88 |
+
st.success("Using DNN face detector (better for close-up faces)")
|
89 |
+
except Exception as e:
|
90 |
+
st.warning(f"Could not load DNN model: {e}")
|
91 |
+
self.use_dnn = False
|
92 |
+
|
93 |
+
if not self.use_dnn:
|
94 |
+
# Fallback to Haar cascade
|
95 |
+
cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
96 |
+
if os.path.exists(cascade_path):
|
97 |
+
self.face_cascade = cv2.CascadeClassifier(cascade_path)
|
98 |
+
st.warning("Using Haar cascade face detector as fallback")
|
99 |
+
else:
|
100 |
+
st.error(f"Cascade file not found: {cascade_path}")
|
101 |
+
|
102 |
+
# Initialize CNN model
|
103 |
+
self.cnn_detector = CNNDeepfakeDetector()
|
104 |
+
|
105 |
+
# Face tracking/smoothing parameters
|
106 |
+
self.face_history = {} # Store face tracking data
|
107 |
+
self.face_history_max_size = 10 # Store history for last 10 frames
|
108 |
+
self.face_ttl = 5 # Number of frames a face can be missing before removing
|
109 |
+
self.next_face_id = 0 # For assigning unique IDs to tracked faces
|
110 |
+
|
111 |
+
# Result smoothing
|
112 |
+
self.result_buffer_size = 5 # Number of classifications to average
|
113 |
+
|
114 |
+
# Performance metrics
|
115 |
+
self.processing_times = deque(maxlen=30)
|
116 |
+
|
117 |
+
st.success("Models loaded successfully!")
|
118 |
+
|
119 |
+
def detect_faces_haar(self, frame):
|
120 |
+
"""Detect faces using Haar cascade"""
|
121 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
122 |
+
faces = self.face_cascade.detectMultiScale(
|
123 |
+
gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
124 |
+
|
125 |
+
# Convert to list of (x,y,w,h,confidence) format for consistency
|
126 |
+
return [(x, y, w, h, 0.8) for (x, y, w, h) in faces]
|
127 |
+
|
128 |
+
def classify_frame(self, face_img, model_type="vit"):
|
129 |
+
"""Classify a face image as real or fake"""
|
130 |
+
try:
|
131 |
+
if model_type == "cnn":
|
132 |
+
return self.cnn_detector.classify_image(face_img)
|
133 |
+
|
134 |
+
# Default to ViT model
|
135 |
+
# Resize image if too small
|
136 |
+
h, w = face_img.shape[:2]
|
137 |
+
if h < 224 or w < 224:
|
138 |
+
scale = max(224/h, 224/w)
|
139 |
+
face_img = cv2.resize(face_img, (int(w*scale), int(h*scale)))
|
140 |
+
|
141 |
+
# Make sure we have valid image data
|
142 |
+
if face_img.size == 0:
|
143 |
+
return "Unknown", 0.0
|
144 |
+
|
145 |
+
# Process with ViT model
|
146 |
+
inputs = self.image_processor(images=face_img, return_tensors="pt")
|
147 |
+
outputs = self.model(**inputs)
|
148 |
+
logits = outputs.logits
|
149 |
+
|
150 |
+
# Get prediction and confidence
|
151 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
152 |
+
pred = torch.argmax(logits, dim=1).item()
|
153 |
+
|
154 |
+
# The model has two classes: 0=Fake, 1=Real
|
155 |
+
label = 'Real' if pred == 1 else 'Fake'
|
156 |
+
confidence = probs[0][pred].item()
|
157 |
+
|
158 |
+
return label, confidence
|
159 |
+
|
160 |
+
except Exception as e:
|
161 |
+
st.error(f"Error in classification: {e}")
|
162 |
+
return "Error", 0.0
|
163 |
+
|
164 |
+
def detect_faces_dnn(self, frame):
|
165 |
+
"""Detect faces using DNN method"""
|
166 |
+
height, width = frame.shape[:2]
|
167 |
+
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
|
168 |
+
(300, 300), (104.0, 177.0, 123.0))
|
169 |
+
self.face_net.setInput(blob)
|
170 |
+
detections = self.face_net.forward()
|
171 |
+
|
172 |
+
faces = []
|
173 |
+
for i in range(detections.shape[2]):
|
174 |
+
confidence = detections[0, 0, i, 2]
|
175 |
+
if confidence > 0.5: # Filter out weak detections
|
176 |
+
box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])
|
177 |
+
(x1, y1, x2, y2) = box.astype("int")
|
178 |
+
# Ensure box is within frame boundaries
|
179 |
+
x1, y1 = max(0, x1), max(0, y1)
|
180 |
+
x2, y2 = min(width, x2), min(height, y2)
|
181 |
+
w, h = x2 - x1, y2 - y1
|
182 |
+
if w > 0 and h > 0: # Valid face area
|
183 |
+
faces.append((x1, y1, w, h, confidence))
|
184 |
+
|
185 |
+
return faces
|
186 |
+
|
187 |
+
def calculate_iou(self, box1, box2):
|
188 |
+
"""Calculate Intersection over Union for two boxes"""
|
189 |
+
# Convert boxes from (x, y, w, h) to (x1, y1, x2, y2)
|
190 |
+
box1_x1, box1_y1, box1_w, box1_h = box1
|
191 |
+
box2_x1, box2_y1, box2_w, box2_h = box2
|
192 |
+
|
193 |
+
box1_x2, box1_y2 = box1_x1 + box1_w, box1_y1 + box1_h
|
194 |
+
box2_x2, box2_y2 = box2_x1 + box2_w, box2_y1 + box2_h
|
195 |
+
|
196 |
+
# Calculate area of intersection rectangle
|
197 |
+
x_left = max(box1_x1, box2_x1)
|
198 |
+
y_top = max(box1_y1, box2_y1)
|
199 |
+
x_right = min(box1_x2, box2_x2)
|
200 |
+
y_bottom = min(box1_y2, box2_y2)
|
201 |
+
|
202 |
+
if x_right < x_left or y_bottom < y_top:
|
203 |
+
return 0.0
|
204 |
+
|
205 |
+
intersection_area = (x_right - x_left) * (y_bottom - y_top)
|
206 |
+
|
207 |
+
# Calculate area of both boxes
|
208 |
+
box1_area = box1_w * box1_h
|
209 |
+
box2_area = box2_w * box2_h
|
210 |
+
|
211 |
+
# Calculate IoU
|
212 |
+
iou = intersection_area / float(box1_area + box2_area - intersection_area)
|
213 |
+
return iou
|
214 |
+
|
215 |
+
def track_faces(self, faces):
|
216 |
+
matched_faces = []
|
217 |
+
unmatched_detections = list(range(len(faces)))
|
218 |
+
|
219 |
+
if not self.face_history:
|
220 |
+
for face in faces:
|
221 |
+
face_id = self.next_face_id
|
222 |
+
self.next_face_id += 1
|
223 |
+
self.face_history[face_id] = {
|
224 |
+
'positions': deque([face[:4]], maxlen=self.face_history_max_size),
|
225 |
+
'ttl': self.face_ttl,
|
226 |
+
'label': None,
|
227 |
+
'confidence': 0.0,
|
228 |
+
'result_history': deque(maxlen=self.result_buffer_size)
|
229 |
+
}
|
230 |
+
matched_faces.append((face_id, face))
|
231 |
+
return matched_faces
|
232 |
+
|
233 |
+
for face_id in list(self.face_history.keys()):
|
234 |
+
last_pos = self.face_history[face_id]['positions'][-1]
|
235 |
+
best_match = -1
|
236 |
+
best_iou = 0.3
|
237 |
+
for i in unmatched_detections:
|
238 |
+
iou = self.calculate_iou(last_pos, faces[i][:4])
|
239 |
+
if iou > best_iou:
|
240 |
+
best_iou = iou
|
241 |
+
best_match = i
|
242 |
+
if best_match != -1:
|
243 |
+
matched_face = faces[best_match]
|
244 |
+
self.face_history[face_id]['positions'].append(matched_face[:4])
|
245 |
+
self.face_history[face_id]['ttl'] = self.face_ttl
|
246 |
+
matched_faces.append((face_id, matched_face))
|
247 |
+
unmatched_detections.remove(best_match)
|
248 |
+
else:
|
249 |
+
self.face_history[face_id]['ttl'] -= 1
|
250 |
+
if self.face_history[face_id]['ttl'] <= 0:
|
251 |
+
del self.face_history[face_id]
|
252 |
+
else:
|
253 |
+
predicted_face = (*last_pos, 0.5)
|
254 |
+
matched_faces.append((face_id, predicted_face))
|
255 |
+
|
256 |
+
for i in unmatched_detections:
|
257 |
+
face_id = self.next_face_id
|
258 |
+
self.next_face_id += 1
|
259 |
+
self.face_history[face_id] = {
|
260 |
+
'positions': deque([faces[i][:4]], maxlen=self.face_history_max_size),
|
261 |
+
'ttl': self.face_ttl,
|
262 |
+
'label': None,
|
263 |
+
'confidence': 0.0,
|
264 |
+
'result_history': deque(maxlen=self.result_buffer_size)
|
265 |
+
}
|
266 |
+
matched_faces.append((face_id, faces[i]))
|
267 |
+
|
268 |
+
return matched_faces
|
269 |
+
|
270 |
+
def smooth_face_position(self, face_id):
|
271 |
+
"""Calculate smoothed position for a tracked face"""
|
272 |
+
positions = self.face_history[face_id]['positions']
|
273 |
+
|
274 |
+
if len(positions) == 1:
|
275 |
+
return positions[0]
|
276 |
+
|
277 |
+
# Weight recent positions more heavily
|
278 |
+
total_weight = 0
|
279 |
+
x, y, w, h = 0, 0, 0, 0
|
280 |
+
|
281 |
+
for i, pos in enumerate(positions):
|
282 |
+
# Exponential weighting - newer positions have more influence
|
283 |
+
weight = 2 ** i # Positions are stored newest to oldest
|
284 |
+
total_weight += weight
|
285 |
+
|
286 |
+
x += pos[0] * weight
|
287 |
+
y += pos[1] * weight
|
288 |
+
w += pos[2] * weight
|
289 |
+
h += pos[3] * weight
|
290 |
+
|
291 |
+
# Calculate weighted average
|
292 |
+
x = int(x / total_weight)
|
293 |
+
y = int(y / total_weight)
|
294 |
+
w = int(w / total_weight)
|
295 |
+
h = int(h / total_weight)
|
296 |
+
|
297 |
+
return (x, y, w, h)
|
298 |
+
|
299 |
+
def update_face_classification(self, face_id, label, confidence):
|
300 |
+
"""Update classification history for a face"""
|
301 |
+
self.face_history[face_id]['result_history'].append((label, confidence))
|
302 |
+
|
303 |
+
# Calculate the smoothed result
|
304 |
+
if not self.face_history[face_id]['result_history']:
|
305 |
+
return label, confidence
|
306 |
+
|
307 |
+
real_votes = 0
|
308 |
+
fake_votes = 0
|
309 |
+
total_confidence = 0.0
|
310 |
+
|
311 |
+
for result_label, result_conf in self.face_history[face_id]['result_history']:
|
312 |
+
if result_label == "Real":
|
313 |
+
real_votes += 1
|
314 |
+
total_confidence += result_conf
|
315 |
+
elif result_label == "Fake":
|
316 |
+
fake_votes += 1
|
317 |
+
total_confidence += result_conf
|
318 |
+
|
319 |
+
# Determine majority vote
|
320 |
+
if real_votes >= fake_votes:
|
321 |
+
smoothed_label = "Real"
|
322 |
+
label_confidence = real_votes / len(self.face_history[face_id]['result_history'])
|
323 |
+
else:
|
324 |
+
smoothed_label = "Fake"
|
325 |
+
label_confidence = fake_votes / len(self.face_history[face_id]['result_history'])
|
326 |
+
|
327 |
+
# Average confidence weighted by vote consistency
|
328 |
+
avg_confidence = (total_confidence / len(self.face_history[face_id]['result_history'])) * label_confidence
|
329 |
+
|
330 |
+
# Store the smoothed result
|
331 |
+
self.face_history[face_id]['label'] = smoothed_label
|
332 |
+
self.face_history[face_id]['confidence'] = avg_confidence
|
333 |
+
|
334 |
+
return smoothed_label, avg_confidence
|
335 |
+
|
336 |
+
def process_video(self, video_path, stframe, status_text, progress_bar, detector_type="dnn", model_type="vit"):
|
337 |
+
"""Process video with Streamlit output"""
|
338 |
+
use_dnn_current = detector_type == "dnn" and self.use_dnn
|
339 |
+
|
340 |
+
cap = cv2.VideoCapture(video_path)
|
341 |
+
if not cap.isOpened():
|
342 |
+
st.error(f"Error: Cannot open video source")
|
343 |
+
return
|
344 |
+
|
345 |
+
# Get video properties
|
346 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
347 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
348 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
349 |
+
total_frames = 250 if video_path != 0 else 0
|
350 |
+
|
351 |
+
# Display video info
|
352 |
+
if video_path != 0: # If not webcam
|
353 |
+
status_text.text(f"Video Info: {frame_width}x{frame_height}, {fps:.1f} FPS, {total_frames} frames")
|
354 |
+
else:
|
355 |
+
status_text.text(f"Webcam: {frame_width}x{frame_height}")
|
356 |
+
|
357 |
+
# Reset tracking data for new video
|
358 |
+
self.face_history = {}
|
359 |
+
self.next_face_id = 0
|
360 |
+
self.processing_times = deque(maxlen=30)
|
361 |
+
|
362 |
+
frame_count = 0
|
363 |
+
process_every_n_frames = 2 # Process every 2nd frame for better performance
|
364 |
+
|
365 |
+
# For face detection stats
|
366 |
+
face_stats = {"Real": 0, "Fake": 0, "Unknown": 0}
|
367 |
+
|
368 |
+
# Main processing loop
|
369 |
+
while True:
|
370 |
+
start_time = time.time()
|
371 |
+
|
372 |
+
ret, frame = cap.read()
|
373 |
+
if not ret:
|
374 |
+
status_text.text("End of video reached")
|
375 |
+
break
|
376 |
+
|
377 |
+
frame_count += 1
|
378 |
+
|
379 |
+
if frame_count == 250:
|
380 |
+
st.success("Video Processed Successfully!")
|
381 |
+
break
|
382 |
+
|
383 |
+
if video_path != 0: # If not webcam, update progress
|
384 |
+
progress = min(float(frame_count) / float(max(total_frames, 1)), 1.0)
|
385 |
+
progress_bar.progress(progress)
|
386 |
+
|
387 |
+
process_frame = (frame_count % process_every_n_frames == 0)
|
388 |
+
|
389 |
+
# Store original frame for face extraction
|
390 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
391 |
+
|
392 |
+
if process_frame:
|
393 |
+
# Detect faces using the appropriate method
|
394 |
+
if use_dnn_current:
|
395 |
+
faces = self.detect_faces_dnn(frame)
|
396 |
+
else:
|
397 |
+
faces = self.detect_faces_haar(frame)
|
398 |
+
|
399 |
+
# Track faces across frames
|
400 |
+
tracked_faces = self.track_faces(faces)
|
401 |
+
|
402 |
+
# Process each tracked face
|
403 |
+
for face_id, (x, y, w, h, face_confidence) in tracked_faces:
|
404 |
+
if face_id not in self.face_history:
|
405 |
+
continue
|
406 |
+
|
407 |
+
sx, sy, sw, sh = self.smooth_face_position(face_id)
|
408 |
+
# Draw rectangle around face with smoothed coordinates
|
409 |
+
cv2.rectangle(frame, (sx, sy), (sx+sw, sy+sh), (0, 255, 255), 2)
|
410 |
+
|
411 |
+
# Only process classification for real detections (not predicted)
|
412 |
+
if w > 20 and h > 20 and face_id in self.face_history:
|
413 |
+
try:
|
414 |
+
# Extract face using smoothed coordinates for better consistency
|
415 |
+
face = frame_rgb[sy:sy+sh, sx:sx+sw]
|
416 |
+
|
417 |
+
# Skip processing if face is too small after smoothing
|
418 |
+
if face.size == 0 or face.shape[0] < 20 or face.shape[1] < 20:
|
419 |
+
continue
|
420 |
+
|
421 |
+
# Process only every N frames or if this is a new face
|
422 |
+
if frame_count % process_every_n_frames == 0 or \
|
423 |
+
len(self.face_history[face_id]['result_history']) == 0:
|
424 |
+
# Classify the face using the selected model
|
425 |
+
label, confidence = self.classify_frame(face, model_type)
|
426 |
+
|
427 |
+
# Update and smooth results
|
428 |
+
label, confidence = self.update_face_classification(face_id, label, confidence)
|
429 |
+
else:
|
430 |
+
# Use last stored result
|
431 |
+
label = self.face_history[face_id]['label'] or "Unknown"
|
432 |
+
confidence = self.face_history[face_id]['confidence']
|
433 |
+
|
434 |
+
# Update stats
|
435 |
+
if label in face_stats:
|
436 |
+
face_stats[label] += 1
|
437 |
+
|
438 |
+
# Display results
|
439 |
+
result_text = f"{label}: {confidence:.2f}"
|
440 |
+
text_color = (0, 255, 0) if label == "Real" else (0, 0, 255)
|
441 |
+
|
442 |
+
# Add text background for better visibility
|
443 |
+
cv2.rectangle(frame, (sx, sy+sh), (sx+len(result_text)*11, sy+sh+25), (0, 0, 0), -1)
|
444 |
+
cv2.putText(frame, result_text, (sx, sy+sh+20),
|
445 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, text_color, 2)
|
446 |
+
|
447 |
+
# Draw face ID
|
448 |
+
cv2.putText(frame, f"ID:{face_id}", (sx, sy-5),
|
449 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)
|
450 |
+
except Exception as e:
|
451 |
+
st.error(f"Error processing face: {e}")
|
452 |
+
|
453 |
+
# Measure processing time
|
454 |
+
process_time = time.time() - start_time
|
455 |
+
self.processing_times.append(process_time)
|
456 |
+
avg_time = sum(self.processing_times) / len(self.processing_times)
|
457 |
+
effective_fps = 1.0 / avg_time if avg_time > 0 else 0
|
458 |
+
|
459 |
+
# Add frame counter and progress
|
460 |
+
if video_path != 0: # If not webcam
|
461 |
+
progress_percent = (frame_count / total_frames) * 100 if total_frames > 0 else 0
|
462 |
+
cv2.putText(frame, f"Frame: {frame_count}/{total_frames} ({progress_percent:.1f}%)",
|
463 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
464 |
+
else:
|
465 |
+
cv2.putText(frame, f"Frame: {frame_count}",
|
466 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
467 |
+
|
468 |
+
# Show detector info and performance
|
469 |
+
detector_name = "DNN" if use_dnn_current else "Haar Cascade"
|
470 |
+
model_name = "ViT" if model_type == "vit" else "CNN"
|
471 |
+
cv2.putText(frame, f"Detector: {detector_name} | Model: {model_name} | FPS: {effective_fps:.1f}",
|
472 |
+
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
473 |
+
|
474 |
+
# Show tracking info
|
475 |
+
cv2.putText(frame, f"Tracked faces: {len(self.face_history)}",
|
476 |
+
(10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
477 |
+
|
478 |
+
# Display the frame in Streamlit
|
479 |
+
stframe.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB")
|
480 |
+
|
481 |
+
# Update stats
|
482 |
+
status_text.text(f"Real: {face_stats['Real']} | Fake: {face_stats['Fake']} | FPS: {effective_fps:.1f}")
|
483 |
+
|
484 |
+
# Check if stop button is pressed
|
485 |
+
if st.session_state.get('stop_button', False):
|
486 |
+
break
|
487 |
+
|
488 |
+
# Clean up
|
489 |
+
cap.release()
|
490 |
+
return face_stats
|
491 |
+
|
492 |
+
# Function to ensure sample video exists
|
493 |
+
def ensure_sample_video():
|
494 |
+
sample_dir = "sample_videos"
|
495 |
+
sample_path = os.path.join(sample_dir, "Sample.mp4")
|
496 |
+
|
497 |
+
# Create directory if it doesn't exist
|
498 |
+
if not os.path.exists(sample_dir):
|
499 |
+
os.makedirs(sample_dir)
|
500 |
+
|
501 |
+
# If sample video doesn't exist, download it
|
502 |
+
if not os.path.exists(sample_path):
|
503 |
+
try:
|
504 |
+
with st.spinner("Downloading sample video..."):
|
505 |
+
# URL to a public domain sample video that contains faces
|
506 |
+
sample_url = "https://storage.googleapis.com/deepfake-demo/sample_deepfake.mp4"
|
507 |
+
|
508 |
+
# Download the file
|
509 |
+
with urllib.request.urlopen(sample_url) as response, open(sample_path, 'wb') as out_file:
|
510 |
+
shutil.copyfileobj(response, out_file)
|
511 |
+
|
512 |
+
st.success("Sample video downloaded successfully!")
|
513 |
+
except Exception as e:
|
514 |
+
st.error(f"Failed to download sample video: {e}")
|
515 |
+
return None
|
516 |
+
|
517 |
+
return sample_path
|
518 |
+
|
519 |
+
def main():
|
520 |
+
st.set_page_config(page_title="Deepfake Detector", layout="wide")
|
521 |
+
|
522 |
+
# App title and description
|
523 |
+
st.title("Deepfake Detection App")
|
524 |
+
st.markdown("""
|
525 |
+
This app uses computer vision and deep learning to detect deepfake videos.
|
526 |
+
Upload a video or use your webcam to detect if faces are real or manipulated.
|
527 |
+
""")
|
528 |
+
|
529 |
+
# Initialize session state for the detector and variables
|
530 |
+
if 'detector' not in st.session_state:
|
531 |
+
st.session_state.detector = None
|
532 |
+
|
533 |
+
if 'stop_button' not in st.session_state:
|
534 |
+
st.session_state.stop_button = False
|
535 |
+
|
536 |
+
if 'use_sample' not in st.session_state:
|
537 |
+
st.session_state.use_sample = False
|
538 |
+
|
539 |
+
if 'sample_path' not in st.session_state:
|
540 |
+
st.session_state.sample_path = None
|
541 |
+
|
542 |
+
# Initialize the detector
|
543 |
+
if st.session_state.detector is None:
|
544 |
+
st.session_state.detector = DeepfakeDetector()
|
545 |
+
|
546 |
+
# Create sidebar for options
|
547 |
+
st.sidebar.title("Options")
|
548 |
+
|
549 |
+
input_option = st.sidebar.radio(
|
550 |
+
"Select Input Source",
|
551 |
+
["Upload Video", "Use Webcam", "Try Sample Video"]
|
552 |
+
)
|
553 |
+
|
554 |
+
detector_type = st.sidebar.selectbox(
|
555 |
+
"Face Detector",
|
556 |
+
["DNN (better for close-ups)", "Haar Cascade (faster)"],
|
557 |
+
index=0 if st.session_state.detector.use_dnn else 1
|
558 |
+
)
|
559 |
+
detector_option = "dnn" if "DNN" in detector_type else "haar"
|
560 |
+
|
561 |
+
# Model selection option
|
562 |
+
model_type = st.sidebar.selectbox(
|
563 |
+
"Deepfake Detection Model",
|
564 |
+
["Vision Transformer (ViT)", "F3 Net Model"],
|
565 |
+
index=0
|
566 |
+
)
|
567 |
+
model_option = "vit" if "Vision" in model_type else "cnn"
|
568 |
+
|
569 |
+
# Main content area
|
570 |
+
col1, col2 = st.columns([3, 1])
|
571 |
+
|
572 |
+
with col1:
|
573 |
+
# Video display area
|
574 |
+
video_placeholder = st.empty()
|
575 |
+
|
576 |
+
with col2:
|
577 |
+
# Status and controls
|
578 |
+
status_text = st.empty()
|
579 |
+
progress_bar = st.empty()
|
580 |
+
|
581 |
+
# Results section
|
582 |
+
st.subheader("Results")
|
583 |
+
results_area = st.empty()
|
584 |
+
|
585 |
+
# Stop button
|
586 |
+
if st.button("Stop Processing"):
|
587 |
+
st.session_state.stop_button = True
|
588 |
+
|
589 |
+
# Process based on selected option
|
590 |
+
if input_option == "Upload Video":
|
591 |
+
uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "mkv"])
|
592 |
+
|
593 |
+
if uploaded_file is not None:
|
594 |
+
st.session_state.stop_button = False
|
595 |
+
|
596 |
+
# Save uploaded file to temp file
|
597 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
598 |
+
tfile.write(uploaded_file.read())
|
599 |
+
video_path = tfile.name
|
600 |
+
|
601 |
+
# Process the video
|
602 |
+
face_stats = st.session_state.detector.process_video(
|
603 |
+
video_path,
|
604 |
+
video_placeholder,
|
605 |
+
status_text,
|
606 |
+
progress_bar,
|
607 |
+
detector_option,
|
608 |
+
model_option
|
609 |
+
)
|
610 |
+
|
611 |
+
# Display results
|
612 |
+
results_df = {
|
613 |
+
"Category": ["Real Faces", "Fake Faces"],
|
614 |
+
"Count": [face_stats["Real"], face_stats["Fake"]]
|
615 |
+
}
|
616 |
+
results_area.dataframe(results_df)
|
617 |
+
|
618 |
+
# Clean up temp file
|
619 |
+
os.unlink(video_path)
|
620 |
+
|
621 |
+
elif input_option == "Use Webcam":
|
622 |
+
# Reset stop button
|
623 |
+
st.session_state.stop_button = False
|
624 |
+
|
625 |
+
if st.sidebar.button("Start Webcam"):
|
626 |
+
# Process webcam feed
|
627 |
+
face_stats = st.session_state.detector.process_video(
|
628 |
+
0, # 0 is the default camera
|
629 |
+
video_placeholder,
|
630 |
+
status_text,
|
631 |
+
progress_bar,
|
632 |
+
detector_option,
|
633 |
+
model_option
|
634 |
+
)
|
635 |
+
|
636 |
+
# Display results after stopping
|
637 |
+
results_df = {
|
638 |
+
"Category": ["Real Faces", "Fake Faces"],
|
639 |
+
"Count": [face_stats["Real"], face_stats["Fake"]]
|
640 |
+
}
|
641 |
+
results_area.dataframe(results_df)
|
642 |
+
|
643 |
+
elif input_option == "Try Sample Video":
|
644 |
+
# Reset stop button
|
645 |
+
st.session_state.stop_button = False
|
646 |
+
|
647 |
+
# Get or download the sample video
|
648 |
+
sample_path = ensure_sample_video()
|
649 |
+
|
650 |
+
if sample_path:
|
651 |
+
if st.sidebar.button("Process Sample Video"):
|
652 |
+
# Process the sample video
|
653 |
+
face_stats = st.session_state.detector.process_video(
|
654 |
+
sample_path,
|
655 |
+
video_placeholder,
|
656 |
+
status_text,
|
657 |
+
progress_bar,
|
658 |
+
detector_option,
|
659 |
+
model_option
|
660 |
+
)
|
661 |
+
|
662 |
+
# Display results
|
663 |
+
results_df = {
|
664 |
+
"Category": ["Real Faces", "Fake Faces"],
|
665 |
+
"Count": [face_stats["Real"], face_stats["Fake"]]
|
666 |
+
}
|
667 |
+
results_area.dataframe(results_df)
|
668 |
+
else:
|
669 |
+
st.sidebar.error("Failed to load sample video. Please try uploading your own video instead.")
|
670 |
+
|
671 |
+
if __name__ == "__main__":
|
672 |
+
main()
|
cnn_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f54d9db020da33f99f861d41dc1334ec33adc14991ada4033a4ece790d0904e
|
3 |
+
size 312843624
|
deploy.prototxt
ADDED
@@ -0,0 +1,1790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input: "data"
|
2 |
+
input_shape {
|
3 |
+
dim: 1
|
4 |
+
dim: 3
|
5 |
+
dim: 300
|
6 |
+
dim: 300
|
7 |
+
}
|
8 |
+
|
9 |
+
layer {
|
10 |
+
name: "data_bn"
|
11 |
+
type: "BatchNorm"
|
12 |
+
bottom: "data"
|
13 |
+
top: "data_bn"
|
14 |
+
param {
|
15 |
+
lr_mult: 0.0
|
16 |
+
}
|
17 |
+
param {
|
18 |
+
lr_mult: 0.0
|
19 |
+
}
|
20 |
+
param {
|
21 |
+
lr_mult: 0.0
|
22 |
+
}
|
23 |
+
}
|
24 |
+
layer {
|
25 |
+
name: "data_scale"
|
26 |
+
type: "Scale"
|
27 |
+
bottom: "data_bn"
|
28 |
+
top: "data_bn"
|
29 |
+
param {
|
30 |
+
lr_mult: 1.0
|
31 |
+
decay_mult: 1.0
|
32 |
+
}
|
33 |
+
param {
|
34 |
+
lr_mult: 2.0
|
35 |
+
decay_mult: 1.0
|
36 |
+
}
|
37 |
+
scale_param {
|
38 |
+
bias_term: true
|
39 |
+
}
|
40 |
+
}
|
41 |
+
layer {
|
42 |
+
name: "conv1_h"
|
43 |
+
type: "Convolution"
|
44 |
+
bottom: "data_bn"
|
45 |
+
top: "conv1_h"
|
46 |
+
param {
|
47 |
+
lr_mult: 1.0
|
48 |
+
decay_mult: 1.0
|
49 |
+
}
|
50 |
+
param {
|
51 |
+
lr_mult: 2.0
|
52 |
+
decay_mult: 1.0
|
53 |
+
}
|
54 |
+
convolution_param {
|
55 |
+
num_output: 32
|
56 |
+
pad: 3
|
57 |
+
kernel_size: 7
|
58 |
+
stride: 2
|
59 |
+
weight_filler {
|
60 |
+
type: "msra"
|
61 |
+
variance_norm: FAN_OUT
|
62 |
+
}
|
63 |
+
bias_filler {
|
64 |
+
type: "constant"
|
65 |
+
value: 0.0
|
66 |
+
}
|
67 |
+
}
|
68 |
+
}
|
69 |
+
layer {
|
70 |
+
name: "conv1_bn_h"
|
71 |
+
type: "BatchNorm"
|
72 |
+
bottom: "conv1_h"
|
73 |
+
top: "conv1_h"
|
74 |
+
param {
|
75 |
+
lr_mult: 0.0
|
76 |
+
}
|
77 |
+
param {
|
78 |
+
lr_mult: 0.0
|
79 |
+
}
|
80 |
+
param {
|
81 |
+
lr_mult: 0.0
|
82 |
+
}
|
83 |
+
}
|
84 |
+
layer {
|
85 |
+
name: "conv1_scale_h"
|
86 |
+
type: "Scale"
|
87 |
+
bottom: "conv1_h"
|
88 |
+
top: "conv1_h"
|
89 |
+
param {
|
90 |
+
lr_mult: 1.0
|
91 |
+
decay_mult: 1.0
|
92 |
+
}
|
93 |
+
param {
|
94 |
+
lr_mult: 2.0
|
95 |
+
decay_mult: 1.0
|
96 |
+
}
|
97 |
+
scale_param {
|
98 |
+
bias_term: true
|
99 |
+
}
|
100 |
+
}
|
101 |
+
layer {
|
102 |
+
name: "conv1_relu"
|
103 |
+
type: "ReLU"
|
104 |
+
bottom: "conv1_h"
|
105 |
+
top: "conv1_h"
|
106 |
+
}
|
107 |
+
layer {
|
108 |
+
name: "conv1_pool"
|
109 |
+
type: "Pooling"
|
110 |
+
bottom: "conv1_h"
|
111 |
+
top: "conv1_pool"
|
112 |
+
pooling_param {
|
113 |
+
kernel_size: 3
|
114 |
+
stride: 2
|
115 |
+
}
|
116 |
+
}
|
117 |
+
layer {
|
118 |
+
name: "layer_64_1_conv1_h"
|
119 |
+
type: "Convolution"
|
120 |
+
bottom: "conv1_pool"
|
121 |
+
top: "layer_64_1_conv1_h"
|
122 |
+
param {
|
123 |
+
lr_mult: 1.0
|
124 |
+
decay_mult: 1.0
|
125 |
+
}
|
126 |
+
convolution_param {
|
127 |
+
num_output: 32
|
128 |
+
bias_term: false
|
129 |
+
pad: 1
|
130 |
+
kernel_size: 3
|
131 |
+
stride: 1
|
132 |
+
weight_filler {
|
133 |
+
type: "msra"
|
134 |
+
}
|
135 |
+
bias_filler {
|
136 |
+
type: "constant"
|
137 |
+
value: 0.0
|
138 |
+
}
|
139 |
+
}
|
140 |
+
}
|
141 |
+
layer {
|
142 |
+
name: "layer_64_1_bn2_h"
|
143 |
+
type: "BatchNorm"
|
144 |
+
bottom: "layer_64_1_conv1_h"
|
145 |
+
top: "layer_64_1_conv1_h"
|
146 |
+
param {
|
147 |
+
lr_mult: 0.0
|
148 |
+
}
|
149 |
+
param {
|
150 |
+
lr_mult: 0.0
|
151 |
+
}
|
152 |
+
param {
|
153 |
+
lr_mult: 0.0
|
154 |
+
}
|
155 |
+
}
|
156 |
+
layer {
|
157 |
+
name: "layer_64_1_scale2_h"
|
158 |
+
type: "Scale"
|
159 |
+
bottom: "layer_64_1_conv1_h"
|
160 |
+
top: "layer_64_1_conv1_h"
|
161 |
+
param {
|
162 |
+
lr_mult: 1.0
|
163 |
+
decay_mult: 1.0
|
164 |
+
}
|
165 |
+
param {
|
166 |
+
lr_mult: 2.0
|
167 |
+
decay_mult: 1.0
|
168 |
+
}
|
169 |
+
scale_param {
|
170 |
+
bias_term: true
|
171 |
+
}
|
172 |
+
}
|
173 |
+
layer {
|
174 |
+
name: "layer_64_1_relu2"
|
175 |
+
type: "ReLU"
|
176 |
+
bottom: "layer_64_1_conv1_h"
|
177 |
+
top: "layer_64_1_conv1_h"
|
178 |
+
}
|
179 |
+
layer {
|
180 |
+
name: "layer_64_1_conv2_h"
|
181 |
+
type: "Convolution"
|
182 |
+
bottom: "layer_64_1_conv1_h"
|
183 |
+
top: "layer_64_1_conv2_h"
|
184 |
+
param {
|
185 |
+
lr_mult: 1.0
|
186 |
+
decay_mult: 1.0
|
187 |
+
}
|
188 |
+
convolution_param {
|
189 |
+
num_output: 32
|
190 |
+
bias_term: false
|
191 |
+
pad: 1
|
192 |
+
kernel_size: 3
|
193 |
+
stride: 1
|
194 |
+
weight_filler {
|
195 |
+
type: "msra"
|
196 |
+
}
|
197 |
+
bias_filler {
|
198 |
+
type: "constant"
|
199 |
+
value: 0.0
|
200 |
+
}
|
201 |
+
}
|
202 |
+
}
|
203 |
+
layer {
|
204 |
+
name: "layer_64_1_sum"
|
205 |
+
type: "Eltwise"
|
206 |
+
bottom: "layer_64_1_conv2_h"
|
207 |
+
bottom: "conv1_pool"
|
208 |
+
top: "layer_64_1_sum"
|
209 |
+
}
|
210 |
+
layer {
|
211 |
+
name: "layer_128_1_bn1_h"
|
212 |
+
type: "BatchNorm"
|
213 |
+
bottom: "layer_64_1_sum"
|
214 |
+
top: "layer_128_1_bn1_h"
|
215 |
+
param {
|
216 |
+
lr_mult: 0.0
|
217 |
+
}
|
218 |
+
param {
|
219 |
+
lr_mult: 0.0
|
220 |
+
}
|
221 |
+
param {
|
222 |
+
lr_mult: 0.0
|
223 |
+
}
|
224 |
+
}
|
225 |
+
layer {
|
226 |
+
name: "layer_128_1_scale1_h"
|
227 |
+
type: "Scale"
|
228 |
+
bottom: "layer_128_1_bn1_h"
|
229 |
+
top: "layer_128_1_bn1_h"
|
230 |
+
param {
|
231 |
+
lr_mult: 1.0
|
232 |
+
decay_mult: 1.0
|
233 |
+
}
|
234 |
+
param {
|
235 |
+
lr_mult: 2.0
|
236 |
+
decay_mult: 1.0
|
237 |
+
}
|
238 |
+
scale_param {
|
239 |
+
bias_term: true
|
240 |
+
}
|
241 |
+
}
|
242 |
+
layer {
|
243 |
+
name: "layer_128_1_relu1"
|
244 |
+
type: "ReLU"
|
245 |
+
bottom: "layer_128_1_bn1_h"
|
246 |
+
top: "layer_128_1_bn1_h"
|
247 |
+
}
|
248 |
+
layer {
|
249 |
+
name: "layer_128_1_conv1_h"
|
250 |
+
type: "Convolution"
|
251 |
+
bottom: "layer_128_1_bn1_h"
|
252 |
+
top: "layer_128_1_conv1_h"
|
253 |
+
param {
|
254 |
+
lr_mult: 1.0
|
255 |
+
decay_mult: 1.0
|
256 |
+
}
|
257 |
+
convolution_param {
|
258 |
+
num_output: 128
|
259 |
+
bias_term: false
|
260 |
+
pad: 1
|
261 |
+
kernel_size: 3
|
262 |
+
stride: 2
|
263 |
+
weight_filler {
|
264 |
+
type: "msra"
|
265 |
+
}
|
266 |
+
bias_filler {
|
267 |
+
type: "constant"
|
268 |
+
value: 0.0
|
269 |
+
}
|
270 |
+
}
|
271 |
+
}
|
272 |
+
layer {
|
273 |
+
name: "layer_128_1_bn2"
|
274 |
+
type: "BatchNorm"
|
275 |
+
bottom: "layer_128_1_conv1_h"
|
276 |
+
top: "layer_128_1_conv1_h"
|
277 |
+
param {
|
278 |
+
lr_mult: 0.0
|
279 |
+
}
|
280 |
+
param {
|
281 |
+
lr_mult: 0.0
|
282 |
+
}
|
283 |
+
param {
|
284 |
+
lr_mult: 0.0
|
285 |
+
}
|
286 |
+
}
|
287 |
+
layer {
|
288 |
+
name: "layer_128_1_scale2"
|
289 |
+
type: "Scale"
|
290 |
+
bottom: "layer_128_1_conv1_h"
|
291 |
+
top: "layer_128_1_conv1_h"
|
292 |
+
param {
|
293 |
+
lr_mult: 1.0
|
294 |
+
decay_mult: 1.0
|
295 |
+
}
|
296 |
+
param {
|
297 |
+
lr_mult: 2.0
|
298 |
+
decay_mult: 1.0
|
299 |
+
}
|
300 |
+
scale_param {
|
301 |
+
bias_term: true
|
302 |
+
}
|
303 |
+
}
|
304 |
+
layer {
|
305 |
+
name: "layer_128_1_relu2"
|
306 |
+
type: "ReLU"
|
307 |
+
bottom: "layer_128_1_conv1_h"
|
308 |
+
top: "layer_128_1_conv1_h"
|
309 |
+
}
|
310 |
+
layer {
|
311 |
+
name: "layer_128_1_conv2"
|
312 |
+
type: "Convolution"
|
313 |
+
bottom: "layer_128_1_conv1_h"
|
314 |
+
top: "layer_128_1_conv2"
|
315 |
+
param {
|
316 |
+
lr_mult: 1.0
|
317 |
+
decay_mult: 1.0
|
318 |
+
}
|
319 |
+
convolution_param {
|
320 |
+
num_output: 128
|
321 |
+
bias_term: false
|
322 |
+
pad: 1
|
323 |
+
kernel_size: 3
|
324 |
+
stride: 1
|
325 |
+
weight_filler {
|
326 |
+
type: "msra"
|
327 |
+
}
|
328 |
+
bias_filler {
|
329 |
+
type: "constant"
|
330 |
+
value: 0.0
|
331 |
+
}
|
332 |
+
}
|
333 |
+
}
|
334 |
+
layer {
|
335 |
+
name: "layer_128_1_conv_expand_h"
|
336 |
+
type: "Convolution"
|
337 |
+
bottom: "layer_128_1_bn1_h"
|
338 |
+
top: "layer_128_1_conv_expand_h"
|
339 |
+
param {
|
340 |
+
lr_mult: 1.0
|
341 |
+
decay_mult: 1.0
|
342 |
+
}
|
343 |
+
convolution_param {
|
344 |
+
num_output: 128
|
345 |
+
bias_term: false
|
346 |
+
pad: 0
|
347 |
+
kernel_size: 1
|
348 |
+
stride: 2
|
349 |
+
weight_filler {
|
350 |
+
type: "msra"
|
351 |
+
}
|
352 |
+
bias_filler {
|
353 |
+
type: "constant"
|
354 |
+
value: 0.0
|
355 |
+
}
|
356 |
+
}
|
357 |
+
}
|
358 |
+
layer {
|
359 |
+
name: "layer_128_1_sum"
|
360 |
+
type: "Eltwise"
|
361 |
+
bottom: "layer_128_1_conv2"
|
362 |
+
bottom: "layer_128_1_conv_expand_h"
|
363 |
+
top: "layer_128_1_sum"
|
364 |
+
}
|
365 |
+
layer {
|
366 |
+
name: "layer_256_1_bn1"
|
367 |
+
type: "BatchNorm"
|
368 |
+
bottom: "layer_128_1_sum"
|
369 |
+
top: "layer_256_1_bn1"
|
370 |
+
param {
|
371 |
+
lr_mult: 0.0
|
372 |
+
}
|
373 |
+
param {
|
374 |
+
lr_mult: 0.0
|
375 |
+
}
|
376 |
+
param {
|
377 |
+
lr_mult: 0.0
|
378 |
+
}
|
379 |
+
}
|
380 |
+
layer {
|
381 |
+
name: "layer_256_1_scale1"
|
382 |
+
type: "Scale"
|
383 |
+
bottom: "layer_256_1_bn1"
|
384 |
+
top: "layer_256_1_bn1"
|
385 |
+
param {
|
386 |
+
lr_mult: 1.0
|
387 |
+
decay_mult: 1.0
|
388 |
+
}
|
389 |
+
param {
|
390 |
+
lr_mult: 2.0
|
391 |
+
decay_mult: 1.0
|
392 |
+
}
|
393 |
+
scale_param {
|
394 |
+
bias_term: true
|
395 |
+
}
|
396 |
+
}
|
397 |
+
layer {
|
398 |
+
name: "layer_256_1_relu1"
|
399 |
+
type: "ReLU"
|
400 |
+
bottom: "layer_256_1_bn1"
|
401 |
+
top: "layer_256_1_bn1"
|
402 |
+
}
|
403 |
+
layer {
|
404 |
+
name: "layer_256_1_conv1"
|
405 |
+
type: "Convolution"
|
406 |
+
bottom: "layer_256_1_bn1"
|
407 |
+
top: "layer_256_1_conv1"
|
408 |
+
param {
|
409 |
+
lr_mult: 1.0
|
410 |
+
decay_mult: 1.0
|
411 |
+
}
|
412 |
+
convolution_param {
|
413 |
+
num_output: 256
|
414 |
+
bias_term: false
|
415 |
+
pad: 1
|
416 |
+
kernel_size: 3
|
417 |
+
stride: 2
|
418 |
+
weight_filler {
|
419 |
+
type: "msra"
|
420 |
+
}
|
421 |
+
bias_filler {
|
422 |
+
type: "constant"
|
423 |
+
value: 0.0
|
424 |
+
}
|
425 |
+
}
|
426 |
+
}
|
427 |
+
layer {
|
428 |
+
name: "layer_256_1_bn2"
|
429 |
+
type: "BatchNorm"
|
430 |
+
bottom: "layer_256_1_conv1"
|
431 |
+
top: "layer_256_1_conv1"
|
432 |
+
param {
|
433 |
+
lr_mult: 0.0
|
434 |
+
}
|
435 |
+
param {
|
436 |
+
lr_mult: 0.0
|
437 |
+
}
|
438 |
+
param {
|
439 |
+
lr_mult: 0.0
|
440 |
+
}
|
441 |
+
}
|
442 |
+
layer {
|
443 |
+
name: "layer_256_1_scale2"
|
444 |
+
type: "Scale"
|
445 |
+
bottom: "layer_256_1_conv1"
|
446 |
+
top: "layer_256_1_conv1"
|
447 |
+
param {
|
448 |
+
lr_mult: 1.0
|
449 |
+
decay_mult: 1.0
|
450 |
+
}
|
451 |
+
param {
|
452 |
+
lr_mult: 2.0
|
453 |
+
decay_mult: 1.0
|
454 |
+
}
|
455 |
+
scale_param {
|
456 |
+
bias_term: true
|
457 |
+
}
|
458 |
+
}
|
459 |
+
layer {
|
460 |
+
name: "layer_256_1_relu2"
|
461 |
+
type: "ReLU"
|
462 |
+
bottom: "layer_256_1_conv1"
|
463 |
+
top: "layer_256_1_conv1"
|
464 |
+
}
|
465 |
+
layer {
|
466 |
+
name: "layer_256_1_conv2"
|
467 |
+
type: "Convolution"
|
468 |
+
bottom: "layer_256_1_conv1"
|
469 |
+
top: "layer_256_1_conv2"
|
470 |
+
param {
|
471 |
+
lr_mult: 1.0
|
472 |
+
decay_mult: 1.0
|
473 |
+
}
|
474 |
+
convolution_param {
|
475 |
+
num_output: 256
|
476 |
+
bias_term: false
|
477 |
+
pad: 1
|
478 |
+
kernel_size: 3
|
479 |
+
stride: 1
|
480 |
+
weight_filler {
|
481 |
+
type: "msra"
|
482 |
+
}
|
483 |
+
bias_filler {
|
484 |
+
type: "constant"
|
485 |
+
value: 0.0
|
486 |
+
}
|
487 |
+
}
|
488 |
+
}
|
489 |
+
layer {
|
490 |
+
name: "layer_256_1_conv_expand"
|
491 |
+
type: "Convolution"
|
492 |
+
bottom: "layer_256_1_bn1"
|
493 |
+
top: "layer_256_1_conv_expand"
|
494 |
+
param {
|
495 |
+
lr_mult: 1.0
|
496 |
+
decay_mult: 1.0
|
497 |
+
}
|
498 |
+
convolution_param {
|
499 |
+
num_output: 256
|
500 |
+
bias_term: false
|
501 |
+
pad: 0
|
502 |
+
kernel_size: 1
|
503 |
+
stride: 2
|
504 |
+
weight_filler {
|
505 |
+
type: "msra"
|
506 |
+
}
|
507 |
+
bias_filler {
|
508 |
+
type: "constant"
|
509 |
+
value: 0.0
|
510 |
+
}
|
511 |
+
}
|
512 |
+
}
|
513 |
+
layer {
|
514 |
+
name: "layer_256_1_sum"
|
515 |
+
type: "Eltwise"
|
516 |
+
bottom: "layer_256_1_conv2"
|
517 |
+
bottom: "layer_256_1_conv_expand"
|
518 |
+
top: "layer_256_1_sum"
|
519 |
+
}
|
520 |
+
layer {
|
521 |
+
name: "layer_512_1_bn1"
|
522 |
+
type: "BatchNorm"
|
523 |
+
bottom: "layer_256_1_sum"
|
524 |
+
top: "layer_512_1_bn1"
|
525 |
+
param {
|
526 |
+
lr_mult: 0.0
|
527 |
+
}
|
528 |
+
param {
|
529 |
+
lr_mult: 0.0
|
530 |
+
}
|
531 |
+
param {
|
532 |
+
lr_mult: 0.0
|
533 |
+
}
|
534 |
+
}
|
535 |
+
layer {
|
536 |
+
name: "layer_512_1_scale1"
|
537 |
+
type: "Scale"
|
538 |
+
bottom: "layer_512_1_bn1"
|
539 |
+
top: "layer_512_1_bn1"
|
540 |
+
param {
|
541 |
+
lr_mult: 1.0
|
542 |
+
decay_mult: 1.0
|
543 |
+
}
|
544 |
+
param {
|
545 |
+
lr_mult: 2.0
|
546 |
+
decay_mult: 1.0
|
547 |
+
}
|
548 |
+
scale_param {
|
549 |
+
bias_term: true
|
550 |
+
}
|
551 |
+
}
|
552 |
+
layer {
|
553 |
+
name: "layer_512_1_relu1"
|
554 |
+
type: "ReLU"
|
555 |
+
bottom: "layer_512_1_bn1"
|
556 |
+
top: "layer_512_1_bn1"
|
557 |
+
}
|
558 |
+
layer {
|
559 |
+
name: "layer_512_1_conv1_h"
|
560 |
+
type: "Convolution"
|
561 |
+
bottom: "layer_512_1_bn1"
|
562 |
+
top: "layer_512_1_conv1_h"
|
563 |
+
param {
|
564 |
+
lr_mult: 1.0
|
565 |
+
decay_mult: 1.0
|
566 |
+
}
|
567 |
+
convolution_param {
|
568 |
+
num_output: 128
|
569 |
+
bias_term: false
|
570 |
+
pad: 1
|
571 |
+
kernel_size: 3
|
572 |
+
stride: 1 # 2
|
573 |
+
weight_filler {
|
574 |
+
type: "msra"
|
575 |
+
}
|
576 |
+
bias_filler {
|
577 |
+
type: "constant"
|
578 |
+
value: 0.0
|
579 |
+
}
|
580 |
+
}
|
581 |
+
}
|
582 |
+
layer {
|
583 |
+
name: "layer_512_1_bn2_h"
|
584 |
+
type: "BatchNorm"
|
585 |
+
bottom: "layer_512_1_conv1_h"
|
586 |
+
top: "layer_512_1_conv1_h"
|
587 |
+
param {
|
588 |
+
lr_mult: 0.0
|
589 |
+
}
|
590 |
+
param {
|
591 |
+
lr_mult: 0.0
|
592 |
+
}
|
593 |
+
param {
|
594 |
+
lr_mult: 0.0
|
595 |
+
}
|
596 |
+
}
|
597 |
+
layer {
|
598 |
+
name: "layer_512_1_scale2_h"
|
599 |
+
type: "Scale"
|
600 |
+
bottom: "layer_512_1_conv1_h"
|
601 |
+
top: "layer_512_1_conv1_h"
|
602 |
+
param {
|
603 |
+
lr_mult: 1.0
|
604 |
+
decay_mult: 1.0
|
605 |
+
}
|
606 |
+
param {
|
607 |
+
lr_mult: 2.0
|
608 |
+
decay_mult: 1.0
|
609 |
+
}
|
610 |
+
scale_param {
|
611 |
+
bias_term: true
|
612 |
+
}
|
613 |
+
}
|
614 |
+
layer {
|
615 |
+
name: "layer_512_1_relu2"
|
616 |
+
type: "ReLU"
|
617 |
+
bottom: "layer_512_1_conv1_h"
|
618 |
+
top: "layer_512_1_conv1_h"
|
619 |
+
}
|
620 |
+
layer {
|
621 |
+
name: "layer_512_1_conv2_h"
|
622 |
+
type: "Convolution"
|
623 |
+
bottom: "layer_512_1_conv1_h"
|
624 |
+
top: "layer_512_1_conv2_h"
|
625 |
+
param {
|
626 |
+
lr_mult: 1.0
|
627 |
+
decay_mult: 1.0
|
628 |
+
}
|
629 |
+
convolution_param {
|
630 |
+
num_output: 256
|
631 |
+
bias_term: false
|
632 |
+
pad: 2 # 1
|
633 |
+
kernel_size: 3
|
634 |
+
stride: 1
|
635 |
+
dilation: 2
|
636 |
+
weight_filler {
|
637 |
+
type: "msra"
|
638 |
+
}
|
639 |
+
bias_filler {
|
640 |
+
type: "constant"
|
641 |
+
value: 0.0
|
642 |
+
}
|
643 |
+
}
|
644 |
+
}
|
645 |
+
layer {
|
646 |
+
name: "layer_512_1_conv_expand_h"
|
647 |
+
type: "Convolution"
|
648 |
+
bottom: "layer_512_1_bn1"
|
649 |
+
top: "layer_512_1_conv_expand_h"
|
650 |
+
param {
|
651 |
+
lr_mult: 1.0
|
652 |
+
decay_mult: 1.0
|
653 |
+
}
|
654 |
+
convolution_param {
|
655 |
+
num_output: 256
|
656 |
+
bias_term: false
|
657 |
+
pad: 0
|
658 |
+
kernel_size: 1
|
659 |
+
stride: 1 # 2
|
660 |
+
weight_filler {
|
661 |
+
type: "msra"
|
662 |
+
}
|
663 |
+
bias_filler {
|
664 |
+
type: "constant"
|
665 |
+
value: 0.0
|
666 |
+
}
|
667 |
+
}
|
668 |
+
}
|
669 |
+
layer {
|
670 |
+
name: "layer_512_1_sum"
|
671 |
+
type: "Eltwise"
|
672 |
+
bottom: "layer_512_1_conv2_h"
|
673 |
+
bottom: "layer_512_1_conv_expand_h"
|
674 |
+
top: "layer_512_1_sum"
|
675 |
+
}
|
676 |
+
layer {
|
677 |
+
name: "last_bn_h"
|
678 |
+
type: "BatchNorm"
|
679 |
+
bottom: "layer_512_1_sum"
|
680 |
+
top: "layer_512_1_sum"
|
681 |
+
param {
|
682 |
+
lr_mult: 0.0
|
683 |
+
}
|
684 |
+
param {
|
685 |
+
lr_mult: 0.0
|
686 |
+
}
|
687 |
+
param {
|
688 |
+
lr_mult: 0.0
|
689 |
+
}
|
690 |
+
}
|
691 |
+
layer {
|
692 |
+
name: "last_scale_h"
|
693 |
+
type: "Scale"
|
694 |
+
bottom: "layer_512_1_sum"
|
695 |
+
top: "layer_512_1_sum"
|
696 |
+
param {
|
697 |
+
lr_mult: 1.0
|
698 |
+
decay_mult: 1.0
|
699 |
+
}
|
700 |
+
param {
|
701 |
+
lr_mult: 2.0
|
702 |
+
decay_mult: 1.0
|
703 |
+
}
|
704 |
+
scale_param {
|
705 |
+
bias_term: true
|
706 |
+
}
|
707 |
+
}
|
708 |
+
layer {
|
709 |
+
name: "last_relu"
|
710 |
+
type: "ReLU"
|
711 |
+
bottom: "layer_512_1_sum"
|
712 |
+
top: "fc7"
|
713 |
+
}
|
714 |
+
|
715 |
+
layer {
|
716 |
+
name: "conv6_1_h"
|
717 |
+
type: "Convolution"
|
718 |
+
bottom: "fc7"
|
719 |
+
top: "conv6_1_h"
|
720 |
+
param {
|
721 |
+
lr_mult: 1
|
722 |
+
decay_mult: 1
|
723 |
+
}
|
724 |
+
param {
|
725 |
+
lr_mult: 2
|
726 |
+
decay_mult: 0
|
727 |
+
}
|
728 |
+
convolution_param {
|
729 |
+
num_output: 128
|
730 |
+
pad: 0
|
731 |
+
kernel_size: 1
|
732 |
+
stride: 1
|
733 |
+
weight_filler {
|
734 |
+
type: "xavier"
|
735 |
+
}
|
736 |
+
bias_filler {
|
737 |
+
type: "constant"
|
738 |
+
value: 0
|
739 |
+
}
|
740 |
+
}
|
741 |
+
}
|
742 |
+
layer {
|
743 |
+
name: "conv6_1_relu"
|
744 |
+
type: "ReLU"
|
745 |
+
bottom: "conv6_1_h"
|
746 |
+
top: "conv6_1_h"
|
747 |
+
}
|
748 |
+
layer {
|
749 |
+
name: "conv6_2_h"
|
750 |
+
type: "Convolution"
|
751 |
+
bottom: "conv6_1_h"
|
752 |
+
top: "conv6_2_h"
|
753 |
+
param {
|
754 |
+
lr_mult: 1
|
755 |
+
decay_mult: 1
|
756 |
+
}
|
757 |
+
param {
|
758 |
+
lr_mult: 2
|
759 |
+
decay_mult: 0
|
760 |
+
}
|
761 |
+
convolution_param {
|
762 |
+
num_output: 256
|
763 |
+
pad: 1
|
764 |
+
kernel_size: 3
|
765 |
+
stride: 2
|
766 |
+
weight_filler {
|
767 |
+
type: "xavier"
|
768 |
+
}
|
769 |
+
bias_filler {
|
770 |
+
type: "constant"
|
771 |
+
value: 0
|
772 |
+
}
|
773 |
+
}
|
774 |
+
}
|
775 |
+
layer {
|
776 |
+
name: "conv6_2_relu"
|
777 |
+
type: "ReLU"
|
778 |
+
bottom: "conv6_2_h"
|
779 |
+
top: "conv6_2_h"
|
780 |
+
}
|
781 |
+
layer {
|
782 |
+
name: "conv7_1_h"
|
783 |
+
type: "Convolution"
|
784 |
+
bottom: "conv6_2_h"
|
785 |
+
top: "conv7_1_h"
|
786 |
+
param {
|
787 |
+
lr_mult: 1
|
788 |
+
decay_mult: 1
|
789 |
+
}
|
790 |
+
param {
|
791 |
+
lr_mult: 2
|
792 |
+
decay_mult: 0
|
793 |
+
}
|
794 |
+
convolution_param {
|
795 |
+
num_output: 64
|
796 |
+
pad: 0
|
797 |
+
kernel_size: 1
|
798 |
+
stride: 1
|
799 |
+
weight_filler {
|
800 |
+
type: "xavier"
|
801 |
+
}
|
802 |
+
bias_filler {
|
803 |
+
type: "constant"
|
804 |
+
value: 0
|
805 |
+
}
|
806 |
+
}
|
807 |
+
}
|
808 |
+
layer {
|
809 |
+
name: "conv7_1_relu"
|
810 |
+
type: "ReLU"
|
811 |
+
bottom: "conv7_1_h"
|
812 |
+
top: "conv7_1_h"
|
813 |
+
}
|
814 |
+
layer {
|
815 |
+
name: "conv7_2_h"
|
816 |
+
type: "Convolution"
|
817 |
+
bottom: "conv7_1_h"
|
818 |
+
top: "conv7_2_h"
|
819 |
+
param {
|
820 |
+
lr_mult: 1
|
821 |
+
decay_mult: 1
|
822 |
+
}
|
823 |
+
param {
|
824 |
+
lr_mult: 2
|
825 |
+
decay_mult: 0
|
826 |
+
}
|
827 |
+
convolution_param {
|
828 |
+
num_output: 128
|
829 |
+
pad: 1
|
830 |
+
kernel_size: 3
|
831 |
+
stride: 2
|
832 |
+
weight_filler {
|
833 |
+
type: "xavier"
|
834 |
+
}
|
835 |
+
bias_filler {
|
836 |
+
type: "constant"
|
837 |
+
value: 0
|
838 |
+
}
|
839 |
+
}
|
840 |
+
}
|
841 |
+
layer {
|
842 |
+
name: "conv7_2_relu"
|
843 |
+
type: "ReLU"
|
844 |
+
bottom: "conv7_2_h"
|
845 |
+
top: "conv7_2_h"
|
846 |
+
}
|
847 |
+
layer {
|
848 |
+
name: "conv8_1_h"
|
849 |
+
type: "Convolution"
|
850 |
+
bottom: "conv7_2_h"
|
851 |
+
top: "conv8_1_h"
|
852 |
+
param {
|
853 |
+
lr_mult: 1
|
854 |
+
decay_mult: 1
|
855 |
+
}
|
856 |
+
param {
|
857 |
+
lr_mult: 2
|
858 |
+
decay_mult: 0
|
859 |
+
}
|
860 |
+
convolution_param {
|
861 |
+
num_output: 64
|
862 |
+
pad: 0
|
863 |
+
kernel_size: 1
|
864 |
+
stride: 1
|
865 |
+
weight_filler {
|
866 |
+
type: "xavier"
|
867 |
+
}
|
868 |
+
bias_filler {
|
869 |
+
type: "constant"
|
870 |
+
value: 0
|
871 |
+
}
|
872 |
+
}
|
873 |
+
}
|
874 |
+
layer {
|
875 |
+
name: "conv8_1_relu"
|
876 |
+
type: "ReLU"
|
877 |
+
bottom: "conv8_1_h"
|
878 |
+
top: "conv8_1_h"
|
879 |
+
}
|
880 |
+
layer {
|
881 |
+
name: "conv8_2_h"
|
882 |
+
type: "Convolution"
|
883 |
+
bottom: "conv8_1_h"
|
884 |
+
top: "conv8_2_h"
|
885 |
+
param {
|
886 |
+
lr_mult: 1
|
887 |
+
decay_mult: 1
|
888 |
+
}
|
889 |
+
param {
|
890 |
+
lr_mult: 2
|
891 |
+
decay_mult: 0
|
892 |
+
}
|
893 |
+
convolution_param {
|
894 |
+
num_output: 128
|
895 |
+
pad: 0
|
896 |
+
kernel_size: 3
|
897 |
+
stride: 1
|
898 |
+
weight_filler {
|
899 |
+
type: "xavier"
|
900 |
+
}
|
901 |
+
bias_filler {
|
902 |
+
type: "constant"
|
903 |
+
value: 0
|
904 |
+
}
|
905 |
+
}
|
906 |
+
}
|
907 |
+
layer {
|
908 |
+
name: "conv8_2_relu"
|
909 |
+
type: "ReLU"
|
910 |
+
bottom: "conv8_2_h"
|
911 |
+
top: "conv8_2_h"
|
912 |
+
}
|
913 |
+
layer {
|
914 |
+
name: "conv9_1_h"
|
915 |
+
type: "Convolution"
|
916 |
+
bottom: "conv8_2_h"
|
917 |
+
top: "conv9_1_h"
|
918 |
+
param {
|
919 |
+
lr_mult: 1
|
920 |
+
decay_mult: 1
|
921 |
+
}
|
922 |
+
param {
|
923 |
+
lr_mult: 2
|
924 |
+
decay_mult: 0
|
925 |
+
}
|
926 |
+
convolution_param {
|
927 |
+
num_output: 64
|
928 |
+
pad: 0
|
929 |
+
kernel_size: 1
|
930 |
+
stride: 1
|
931 |
+
weight_filler {
|
932 |
+
type: "xavier"
|
933 |
+
}
|
934 |
+
bias_filler {
|
935 |
+
type: "constant"
|
936 |
+
value: 0
|
937 |
+
}
|
938 |
+
}
|
939 |
+
}
|
940 |
+
layer {
|
941 |
+
name: "conv9_1_relu"
|
942 |
+
type: "ReLU"
|
943 |
+
bottom: "conv9_1_h"
|
944 |
+
top: "conv9_1_h"
|
945 |
+
}
|
946 |
+
layer {
|
947 |
+
name: "conv9_2_h"
|
948 |
+
type: "Convolution"
|
949 |
+
bottom: "conv9_1_h"
|
950 |
+
top: "conv9_2_h"
|
951 |
+
param {
|
952 |
+
lr_mult: 1
|
953 |
+
decay_mult: 1
|
954 |
+
}
|
955 |
+
param {
|
956 |
+
lr_mult: 2
|
957 |
+
decay_mult: 0
|
958 |
+
}
|
959 |
+
convolution_param {
|
960 |
+
num_output: 128
|
961 |
+
pad: 0
|
962 |
+
kernel_size: 3
|
963 |
+
stride: 1
|
964 |
+
weight_filler {
|
965 |
+
type: "xavier"
|
966 |
+
}
|
967 |
+
bias_filler {
|
968 |
+
type: "constant"
|
969 |
+
value: 0
|
970 |
+
}
|
971 |
+
}
|
972 |
+
}
|
973 |
+
layer {
|
974 |
+
name: "conv9_2_relu"
|
975 |
+
type: "ReLU"
|
976 |
+
bottom: "conv9_2_h"
|
977 |
+
top: "conv9_2_h"
|
978 |
+
}
|
979 |
+
layer {
|
980 |
+
name: "conv4_3_norm"
|
981 |
+
type: "Normalize"
|
982 |
+
bottom: "layer_256_1_bn1"
|
983 |
+
top: "conv4_3_norm"
|
984 |
+
norm_param {
|
985 |
+
across_spatial: false
|
986 |
+
scale_filler {
|
987 |
+
type: "constant"
|
988 |
+
value: 20
|
989 |
+
}
|
990 |
+
channel_shared: false
|
991 |
+
}
|
992 |
+
}
|
993 |
+
layer {
|
994 |
+
name: "conv4_3_norm_mbox_loc"
|
995 |
+
type: "Convolution"
|
996 |
+
bottom: "conv4_3_norm"
|
997 |
+
top: "conv4_3_norm_mbox_loc"
|
998 |
+
param {
|
999 |
+
lr_mult: 1
|
1000 |
+
decay_mult: 1
|
1001 |
+
}
|
1002 |
+
param {
|
1003 |
+
lr_mult: 2
|
1004 |
+
decay_mult: 0
|
1005 |
+
}
|
1006 |
+
convolution_param {
|
1007 |
+
num_output: 16
|
1008 |
+
pad: 1
|
1009 |
+
kernel_size: 3
|
1010 |
+
stride: 1
|
1011 |
+
weight_filler {
|
1012 |
+
type: "xavier"
|
1013 |
+
}
|
1014 |
+
bias_filler {
|
1015 |
+
type: "constant"
|
1016 |
+
value: 0
|
1017 |
+
}
|
1018 |
+
}
|
1019 |
+
}
|
1020 |
+
layer {
|
1021 |
+
name: "conv4_3_norm_mbox_loc_perm"
|
1022 |
+
type: "Permute"
|
1023 |
+
bottom: "conv4_3_norm_mbox_loc"
|
1024 |
+
top: "conv4_3_norm_mbox_loc_perm"
|
1025 |
+
permute_param {
|
1026 |
+
order: 0
|
1027 |
+
order: 2
|
1028 |
+
order: 3
|
1029 |
+
order: 1
|
1030 |
+
}
|
1031 |
+
}
|
1032 |
+
layer {
|
1033 |
+
name: "conv4_3_norm_mbox_loc_flat"
|
1034 |
+
type: "Flatten"
|
1035 |
+
bottom: "conv4_3_norm_mbox_loc_perm"
|
1036 |
+
top: "conv4_3_norm_mbox_loc_flat"
|
1037 |
+
flatten_param {
|
1038 |
+
axis: 1
|
1039 |
+
}
|
1040 |
+
}
|
1041 |
+
layer {
|
1042 |
+
name: "conv4_3_norm_mbox_conf"
|
1043 |
+
type: "Convolution"
|
1044 |
+
bottom: "conv4_3_norm"
|
1045 |
+
top: "conv4_3_norm_mbox_conf"
|
1046 |
+
param {
|
1047 |
+
lr_mult: 1
|
1048 |
+
decay_mult: 1
|
1049 |
+
}
|
1050 |
+
param {
|
1051 |
+
lr_mult: 2
|
1052 |
+
decay_mult: 0
|
1053 |
+
}
|
1054 |
+
convolution_param {
|
1055 |
+
num_output: 8 # 84
|
1056 |
+
pad: 1
|
1057 |
+
kernel_size: 3
|
1058 |
+
stride: 1
|
1059 |
+
weight_filler {
|
1060 |
+
type: "xavier"
|
1061 |
+
}
|
1062 |
+
bias_filler {
|
1063 |
+
type: "constant"
|
1064 |
+
value: 0
|
1065 |
+
}
|
1066 |
+
}
|
1067 |
+
}
|
1068 |
+
layer {
|
1069 |
+
name: "conv4_3_norm_mbox_conf_perm"
|
1070 |
+
type: "Permute"
|
1071 |
+
bottom: "conv4_3_norm_mbox_conf"
|
1072 |
+
top: "conv4_3_norm_mbox_conf_perm"
|
1073 |
+
permute_param {
|
1074 |
+
order: 0
|
1075 |
+
order: 2
|
1076 |
+
order: 3
|
1077 |
+
order: 1
|
1078 |
+
}
|
1079 |
+
}
|
1080 |
+
layer {
|
1081 |
+
name: "conv4_3_norm_mbox_conf_flat"
|
1082 |
+
type: "Flatten"
|
1083 |
+
bottom: "conv4_3_norm_mbox_conf_perm"
|
1084 |
+
top: "conv4_3_norm_mbox_conf_flat"
|
1085 |
+
flatten_param {
|
1086 |
+
axis: 1
|
1087 |
+
}
|
1088 |
+
}
|
1089 |
+
layer {
|
1090 |
+
name: "conv4_3_norm_mbox_priorbox"
|
1091 |
+
type: "PriorBox"
|
1092 |
+
bottom: "conv4_3_norm"
|
1093 |
+
bottom: "data"
|
1094 |
+
top: "conv4_3_norm_mbox_priorbox"
|
1095 |
+
prior_box_param {
|
1096 |
+
min_size: 30.0
|
1097 |
+
max_size: 60.0
|
1098 |
+
aspect_ratio: 2
|
1099 |
+
flip: true
|
1100 |
+
clip: false
|
1101 |
+
variance: 0.1
|
1102 |
+
variance: 0.1
|
1103 |
+
variance: 0.2
|
1104 |
+
variance: 0.2
|
1105 |
+
step: 8
|
1106 |
+
offset: 0.5
|
1107 |
+
}
|
1108 |
+
}
|
1109 |
+
layer {
|
1110 |
+
name: "fc7_mbox_loc"
|
1111 |
+
type: "Convolution"
|
1112 |
+
bottom: "fc7"
|
1113 |
+
top: "fc7_mbox_loc"
|
1114 |
+
param {
|
1115 |
+
lr_mult: 1
|
1116 |
+
decay_mult: 1
|
1117 |
+
}
|
1118 |
+
param {
|
1119 |
+
lr_mult: 2
|
1120 |
+
decay_mult: 0
|
1121 |
+
}
|
1122 |
+
convolution_param {
|
1123 |
+
num_output: 24
|
1124 |
+
pad: 1
|
1125 |
+
kernel_size: 3
|
1126 |
+
stride: 1
|
1127 |
+
weight_filler {
|
1128 |
+
type: "xavier"
|
1129 |
+
}
|
1130 |
+
bias_filler {
|
1131 |
+
type: "constant"
|
1132 |
+
value: 0
|
1133 |
+
}
|
1134 |
+
}
|
1135 |
+
}
|
1136 |
+
layer {
|
1137 |
+
name: "fc7_mbox_loc_perm"
|
1138 |
+
type: "Permute"
|
1139 |
+
bottom: "fc7_mbox_loc"
|
1140 |
+
top: "fc7_mbox_loc_perm"
|
1141 |
+
permute_param {
|
1142 |
+
order: 0
|
1143 |
+
order: 2
|
1144 |
+
order: 3
|
1145 |
+
order: 1
|
1146 |
+
}
|
1147 |
+
}
|
1148 |
+
layer {
|
1149 |
+
name: "fc7_mbox_loc_flat"
|
1150 |
+
type: "Flatten"
|
1151 |
+
bottom: "fc7_mbox_loc_perm"
|
1152 |
+
top: "fc7_mbox_loc_flat"
|
1153 |
+
flatten_param {
|
1154 |
+
axis: 1
|
1155 |
+
}
|
1156 |
+
}
|
1157 |
+
layer {
|
1158 |
+
name: "fc7_mbox_conf"
|
1159 |
+
type: "Convolution"
|
1160 |
+
bottom: "fc7"
|
1161 |
+
top: "fc7_mbox_conf"
|
1162 |
+
param {
|
1163 |
+
lr_mult: 1
|
1164 |
+
decay_mult: 1
|
1165 |
+
}
|
1166 |
+
param {
|
1167 |
+
lr_mult: 2
|
1168 |
+
decay_mult: 0
|
1169 |
+
}
|
1170 |
+
convolution_param {
|
1171 |
+
num_output: 12 # 126
|
1172 |
+
pad: 1
|
1173 |
+
kernel_size: 3
|
1174 |
+
stride: 1
|
1175 |
+
weight_filler {
|
1176 |
+
type: "xavier"
|
1177 |
+
}
|
1178 |
+
bias_filler {
|
1179 |
+
type: "constant"
|
1180 |
+
value: 0
|
1181 |
+
}
|
1182 |
+
}
|
1183 |
+
}
|
1184 |
+
layer {
|
1185 |
+
name: "fc7_mbox_conf_perm"
|
1186 |
+
type: "Permute"
|
1187 |
+
bottom: "fc7_mbox_conf"
|
1188 |
+
top: "fc7_mbox_conf_perm"
|
1189 |
+
permute_param {
|
1190 |
+
order: 0
|
1191 |
+
order: 2
|
1192 |
+
order: 3
|
1193 |
+
order: 1
|
1194 |
+
}
|
1195 |
+
}
|
1196 |
+
layer {
|
1197 |
+
name: "fc7_mbox_conf_flat"
|
1198 |
+
type: "Flatten"
|
1199 |
+
bottom: "fc7_mbox_conf_perm"
|
1200 |
+
top: "fc7_mbox_conf_flat"
|
1201 |
+
flatten_param {
|
1202 |
+
axis: 1
|
1203 |
+
}
|
1204 |
+
}
|
1205 |
+
layer {
|
1206 |
+
name: "fc7_mbox_priorbox"
|
1207 |
+
type: "PriorBox"
|
1208 |
+
bottom: "fc7"
|
1209 |
+
bottom: "data"
|
1210 |
+
top: "fc7_mbox_priorbox"
|
1211 |
+
prior_box_param {
|
1212 |
+
min_size: 60.0
|
1213 |
+
max_size: 111.0
|
1214 |
+
aspect_ratio: 2
|
1215 |
+
aspect_ratio: 3
|
1216 |
+
flip: true
|
1217 |
+
clip: false
|
1218 |
+
variance: 0.1
|
1219 |
+
variance: 0.1
|
1220 |
+
variance: 0.2
|
1221 |
+
variance: 0.2
|
1222 |
+
step: 16
|
1223 |
+
offset: 0.5
|
1224 |
+
}
|
1225 |
+
}
|
1226 |
+
layer {
|
1227 |
+
name: "conv6_2_mbox_loc"
|
1228 |
+
type: "Convolution"
|
1229 |
+
bottom: "conv6_2_h"
|
1230 |
+
top: "conv6_2_mbox_loc"
|
1231 |
+
param {
|
1232 |
+
lr_mult: 1
|
1233 |
+
decay_mult: 1
|
1234 |
+
}
|
1235 |
+
param {
|
1236 |
+
lr_mult: 2
|
1237 |
+
decay_mult: 0
|
1238 |
+
}
|
1239 |
+
convolution_param {
|
1240 |
+
num_output: 24
|
1241 |
+
pad: 1
|
1242 |
+
kernel_size: 3
|
1243 |
+
stride: 1
|
1244 |
+
weight_filler {
|
1245 |
+
type: "xavier"
|
1246 |
+
}
|
1247 |
+
bias_filler {
|
1248 |
+
type: "constant"
|
1249 |
+
value: 0
|
1250 |
+
}
|
1251 |
+
}
|
1252 |
+
}
|
1253 |
+
layer {
|
1254 |
+
name: "conv6_2_mbox_loc_perm"
|
1255 |
+
type: "Permute"
|
1256 |
+
bottom: "conv6_2_mbox_loc"
|
1257 |
+
top: "conv6_2_mbox_loc_perm"
|
1258 |
+
permute_param {
|
1259 |
+
order: 0
|
1260 |
+
order: 2
|
1261 |
+
order: 3
|
1262 |
+
order: 1
|
1263 |
+
}
|
1264 |
+
}
|
1265 |
+
layer {
|
1266 |
+
name: "conv6_2_mbox_loc_flat"
|
1267 |
+
type: "Flatten"
|
1268 |
+
bottom: "conv6_2_mbox_loc_perm"
|
1269 |
+
top: "conv6_2_mbox_loc_flat"
|
1270 |
+
flatten_param {
|
1271 |
+
axis: 1
|
1272 |
+
}
|
1273 |
+
}
|
1274 |
+
layer {
|
1275 |
+
name: "conv6_2_mbox_conf"
|
1276 |
+
type: "Convolution"
|
1277 |
+
bottom: "conv6_2_h"
|
1278 |
+
top: "conv6_2_mbox_conf"
|
1279 |
+
param {
|
1280 |
+
lr_mult: 1
|
1281 |
+
decay_mult: 1
|
1282 |
+
}
|
1283 |
+
param {
|
1284 |
+
lr_mult: 2
|
1285 |
+
decay_mult: 0
|
1286 |
+
}
|
1287 |
+
convolution_param {
|
1288 |
+
num_output: 12 # 126
|
1289 |
+
pad: 1
|
1290 |
+
kernel_size: 3
|
1291 |
+
stride: 1
|
1292 |
+
weight_filler {
|
1293 |
+
type: "xavier"
|
1294 |
+
}
|
1295 |
+
bias_filler {
|
1296 |
+
type: "constant"
|
1297 |
+
value: 0
|
1298 |
+
}
|
1299 |
+
}
|
1300 |
+
}
|
1301 |
+
layer {
|
1302 |
+
name: "conv6_2_mbox_conf_perm"
|
1303 |
+
type: "Permute"
|
1304 |
+
bottom: "conv6_2_mbox_conf"
|
1305 |
+
top: "conv6_2_mbox_conf_perm"
|
1306 |
+
permute_param {
|
1307 |
+
order: 0
|
1308 |
+
order: 2
|
1309 |
+
order: 3
|
1310 |
+
order: 1
|
1311 |
+
}
|
1312 |
+
}
|
1313 |
+
layer {
|
1314 |
+
name: "conv6_2_mbox_conf_flat"
|
1315 |
+
type: "Flatten"
|
1316 |
+
bottom: "conv6_2_mbox_conf_perm"
|
1317 |
+
top: "conv6_2_mbox_conf_flat"
|
1318 |
+
flatten_param {
|
1319 |
+
axis: 1
|
1320 |
+
}
|
1321 |
+
}
|
1322 |
+
layer {
|
1323 |
+
name: "conv6_2_mbox_priorbox"
|
1324 |
+
type: "PriorBox"
|
1325 |
+
bottom: "conv6_2_h"
|
1326 |
+
bottom: "data"
|
1327 |
+
top: "conv6_2_mbox_priorbox"
|
1328 |
+
prior_box_param {
|
1329 |
+
min_size: 111.0
|
1330 |
+
max_size: 162.0
|
1331 |
+
aspect_ratio: 2
|
1332 |
+
aspect_ratio: 3
|
1333 |
+
flip: true
|
1334 |
+
clip: false
|
1335 |
+
variance: 0.1
|
1336 |
+
variance: 0.1
|
1337 |
+
variance: 0.2
|
1338 |
+
variance: 0.2
|
1339 |
+
step: 32
|
1340 |
+
offset: 0.5
|
1341 |
+
}
|
1342 |
+
}
|
1343 |
+
layer {
|
1344 |
+
name: "conv7_2_mbox_loc"
|
1345 |
+
type: "Convolution"
|
1346 |
+
bottom: "conv7_2_h"
|
1347 |
+
top: "conv7_2_mbox_loc"
|
1348 |
+
param {
|
1349 |
+
lr_mult: 1
|
1350 |
+
decay_mult: 1
|
1351 |
+
}
|
1352 |
+
param {
|
1353 |
+
lr_mult: 2
|
1354 |
+
decay_mult: 0
|
1355 |
+
}
|
1356 |
+
convolution_param {
|
1357 |
+
num_output: 24
|
1358 |
+
pad: 1
|
1359 |
+
kernel_size: 3
|
1360 |
+
stride: 1
|
1361 |
+
weight_filler {
|
1362 |
+
type: "xavier"
|
1363 |
+
}
|
1364 |
+
bias_filler {
|
1365 |
+
type: "constant"
|
1366 |
+
value: 0
|
1367 |
+
}
|
1368 |
+
}
|
1369 |
+
}
|
1370 |
+
layer {
|
1371 |
+
name: "conv7_2_mbox_loc_perm"
|
1372 |
+
type: "Permute"
|
1373 |
+
bottom: "conv7_2_mbox_loc"
|
1374 |
+
top: "conv7_2_mbox_loc_perm"
|
1375 |
+
permute_param {
|
1376 |
+
order: 0
|
1377 |
+
order: 2
|
1378 |
+
order: 3
|
1379 |
+
order: 1
|
1380 |
+
}
|
1381 |
+
}
|
1382 |
+
layer {
|
1383 |
+
name: "conv7_2_mbox_loc_flat"
|
1384 |
+
type: "Flatten"
|
1385 |
+
bottom: "conv7_2_mbox_loc_perm"
|
1386 |
+
top: "conv7_2_mbox_loc_flat"
|
1387 |
+
flatten_param {
|
1388 |
+
axis: 1
|
1389 |
+
}
|
1390 |
+
}
|
1391 |
+
layer {
|
1392 |
+
name: "conv7_2_mbox_conf"
|
1393 |
+
type: "Convolution"
|
1394 |
+
bottom: "conv7_2_h"
|
1395 |
+
top: "conv7_2_mbox_conf"
|
1396 |
+
param {
|
1397 |
+
lr_mult: 1
|
1398 |
+
decay_mult: 1
|
1399 |
+
}
|
1400 |
+
param {
|
1401 |
+
lr_mult: 2
|
1402 |
+
decay_mult: 0
|
1403 |
+
}
|
1404 |
+
convolution_param {
|
1405 |
+
num_output: 12 # 126
|
1406 |
+
pad: 1
|
1407 |
+
kernel_size: 3
|
1408 |
+
stride: 1
|
1409 |
+
weight_filler {
|
1410 |
+
type: "xavier"
|
1411 |
+
}
|
1412 |
+
bias_filler {
|
1413 |
+
type: "constant"
|
1414 |
+
value: 0
|
1415 |
+
}
|
1416 |
+
}
|
1417 |
+
}
|
1418 |
+
layer {
|
1419 |
+
name: "conv7_2_mbox_conf_perm"
|
1420 |
+
type: "Permute"
|
1421 |
+
bottom: "conv7_2_mbox_conf"
|
1422 |
+
top: "conv7_2_mbox_conf_perm"
|
1423 |
+
permute_param {
|
1424 |
+
order: 0
|
1425 |
+
order: 2
|
1426 |
+
order: 3
|
1427 |
+
order: 1
|
1428 |
+
}
|
1429 |
+
}
|
1430 |
+
layer {
|
1431 |
+
name: "conv7_2_mbox_conf_flat"
|
1432 |
+
type: "Flatten"
|
1433 |
+
bottom: "conv7_2_mbox_conf_perm"
|
1434 |
+
top: "conv7_2_mbox_conf_flat"
|
1435 |
+
flatten_param {
|
1436 |
+
axis: 1
|
1437 |
+
}
|
1438 |
+
}
|
1439 |
+
layer {
|
1440 |
+
name: "conv7_2_mbox_priorbox"
|
1441 |
+
type: "PriorBox"
|
1442 |
+
bottom: "conv7_2_h"
|
1443 |
+
bottom: "data"
|
1444 |
+
top: "conv7_2_mbox_priorbox"
|
1445 |
+
prior_box_param {
|
1446 |
+
min_size: 162.0
|
1447 |
+
max_size: 213.0
|
1448 |
+
aspect_ratio: 2
|
1449 |
+
aspect_ratio: 3
|
1450 |
+
flip: true
|
1451 |
+
clip: false
|
1452 |
+
variance: 0.1
|
1453 |
+
variance: 0.1
|
1454 |
+
variance: 0.2
|
1455 |
+
variance: 0.2
|
1456 |
+
step: 64
|
1457 |
+
offset: 0.5
|
1458 |
+
}
|
1459 |
+
}
|
1460 |
+
layer {
|
1461 |
+
name: "conv8_2_mbox_loc"
|
1462 |
+
type: "Convolution"
|
1463 |
+
bottom: "conv8_2_h"
|
1464 |
+
top: "conv8_2_mbox_loc"
|
1465 |
+
param {
|
1466 |
+
lr_mult: 1
|
1467 |
+
decay_mult: 1
|
1468 |
+
}
|
1469 |
+
param {
|
1470 |
+
lr_mult: 2
|
1471 |
+
decay_mult: 0
|
1472 |
+
}
|
1473 |
+
convolution_param {
|
1474 |
+
num_output: 16
|
1475 |
+
pad: 1
|
1476 |
+
kernel_size: 3
|
1477 |
+
stride: 1
|
1478 |
+
weight_filler {
|
1479 |
+
type: "xavier"
|
1480 |
+
}
|
1481 |
+
bias_filler {
|
1482 |
+
type: "constant"
|
1483 |
+
value: 0
|
1484 |
+
}
|
1485 |
+
}
|
1486 |
+
}
|
1487 |
+
layer {
|
1488 |
+
name: "conv8_2_mbox_loc_perm"
|
1489 |
+
type: "Permute"
|
1490 |
+
bottom: "conv8_2_mbox_loc"
|
1491 |
+
top: "conv8_2_mbox_loc_perm"
|
1492 |
+
permute_param {
|
1493 |
+
order: 0
|
1494 |
+
order: 2
|
1495 |
+
order: 3
|
1496 |
+
order: 1
|
1497 |
+
}
|
1498 |
+
}
|
1499 |
+
layer {
|
1500 |
+
name: "conv8_2_mbox_loc_flat"
|
1501 |
+
type: "Flatten"
|
1502 |
+
bottom: "conv8_2_mbox_loc_perm"
|
1503 |
+
top: "conv8_2_mbox_loc_flat"
|
1504 |
+
flatten_param {
|
1505 |
+
axis: 1
|
1506 |
+
}
|
1507 |
+
}
|
1508 |
+
layer {
|
1509 |
+
name: "conv8_2_mbox_conf"
|
1510 |
+
type: "Convolution"
|
1511 |
+
bottom: "conv8_2_h"
|
1512 |
+
top: "conv8_2_mbox_conf"
|
1513 |
+
param {
|
1514 |
+
lr_mult: 1
|
1515 |
+
decay_mult: 1
|
1516 |
+
}
|
1517 |
+
param {
|
1518 |
+
lr_mult: 2
|
1519 |
+
decay_mult: 0
|
1520 |
+
}
|
1521 |
+
convolution_param {
|
1522 |
+
num_output: 8 # 84
|
1523 |
+
pad: 1
|
1524 |
+
kernel_size: 3
|
1525 |
+
stride: 1
|
1526 |
+
weight_filler {
|
1527 |
+
type: "xavier"
|
1528 |
+
}
|
1529 |
+
bias_filler {
|
1530 |
+
type: "constant"
|
1531 |
+
value: 0
|
1532 |
+
}
|
1533 |
+
}
|
1534 |
+
}
|
1535 |
+
layer {
|
1536 |
+
name: "conv8_2_mbox_conf_perm"
|
1537 |
+
type: "Permute"
|
1538 |
+
bottom: "conv8_2_mbox_conf"
|
1539 |
+
top: "conv8_2_mbox_conf_perm"
|
1540 |
+
permute_param {
|
1541 |
+
order: 0
|
1542 |
+
order: 2
|
1543 |
+
order: 3
|
1544 |
+
order: 1
|
1545 |
+
}
|
1546 |
+
}
|
1547 |
+
layer {
|
1548 |
+
name: "conv8_2_mbox_conf_flat"
|
1549 |
+
type: "Flatten"
|
1550 |
+
bottom: "conv8_2_mbox_conf_perm"
|
1551 |
+
top: "conv8_2_mbox_conf_flat"
|
1552 |
+
flatten_param {
|
1553 |
+
axis: 1
|
1554 |
+
}
|
1555 |
+
}
|
1556 |
+
layer {
|
1557 |
+
name: "conv8_2_mbox_priorbox"
|
1558 |
+
type: "PriorBox"
|
1559 |
+
bottom: "conv8_2_h"
|
1560 |
+
bottom: "data"
|
1561 |
+
top: "conv8_2_mbox_priorbox"
|
1562 |
+
prior_box_param {
|
1563 |
+
min_size: 213.0
|
1564 |
+
max_size: 264.0
|
1565 |
+
aspect_ratio: 2
|
1566 |
+
flip: true
|
1567 |
+
clip: false
|
1568 |
+
variance: 0.1
|
1569 |
+
variance: 0.1
|
1570 |
+
variance: 0.2
|
1571 |
+
variance: 0.2
|
1572 |
+
step: 100
|
1573 |
+
offset: 0.5
|
1574 |
+
}
|
1575 |
+
}
|
1576 |
+
layer {
|
1577 |
+
name: "conv9_2_mbox_loc"
|
1578 |
+
type: "Convolution"
|
1579 |
+
bottom: "conv9_2_h"
|
1580 |
+
top: "conv9_2_mbox_loc"
|
1581 |
+
param {
|
1582 |
+
lr_mult: 1
|
1583 |
+
decay_mult: 1
|
1584 |
+
}
|
1585 |
+
param {
|
1586 |
+
lr_mult: 2
|
1587 |
+
decay_mult: 0
|
1588 |
+
}
|
1589 |
+
convolution_param {
|
1590 |
+
num_output: 16
|
1591 |
+
pad: 1
|
1592 |
+
kernel_size: 3
|
1593 |
+
stride: 1
|
1594 |
+
weight_filler {
|
1595 |
+
type: "xavier"
|
1596 |
+
}
|
1597 |
+
bias_filler {
|
1598 |
+
type: "constant"
|
1599 |
+
value: 0
|
1600 |
+
}
|
1601 |
+
}
|
1602 |
+
}
|
1603 |
+
layer {
|
1604 |
+
name: "conv9_2_mbox_loc_perm"
|
1605 |
+
type: "Permute"
|
1606 |
+
bottom: "conv9_2_mbox_loc"
|
1607 |
+
top: "conv9_2_mbox_loc_perm"
|
1608 |
+
permute_param {
|
1609 |
+
order: 0
|
1610 |
+
order: 2
|
1611 |
+
order: 3
|
1612 |
+
order: 1
|
1613 |
+
}
|
1614 |
+
}
|
1615 |
+
layer {
|
1616 |
+
name: "conv9_2_mbox_loc_flat"
|
1617 |
+
type: "Flatten"
|
1618 |
+
bottom: "conv9_2_mbox_loc_perm"
|
1619 |
+
top: "conv9_2_mbox_loc_flat"
|
1620 |
+
flatten_param {
|
1621 |
+
axis: 1
|
1622 |
+
}
|
1623 |
+
}
|
1624 |
+
layer {
|
1625 |
+
name: "conv9_2_mbox_conf"
|
1626 |
+
type: "Convolution"
|
1627 |
+
bottom: "conv9_2_h"
|
1628 |
+
top: "conv9_2_mbox_conf"
|
1629 |
+
param {
|
1630 |
+
lr_mult: 1
|
1631 |
+
decay_mult: 1
|
1632 |
+
}
|
1633 |
+
param {
|
1634 |
+
lr_mult: 2
|
1635 |
+
decay_mult: 0
|
1636 |
+
}
|
1637 |
+
convolution_param {
|
1638 |
+
num_output: 8 # 84
|
1639 |
+
pad: 1
|
1640 |
+
kernel_size: 3
|
1641 |
+
stride: 1
|
1642 |
+
weight_filler {
|
1643 |
+
type: "xavier"
|
1644 |
+
}
|
1645 |
+
bias_filler {
|
1646 |
+
type: "constant"
|
1647 |
+
value: 0
|
1648 |
+
}
|
1649 |
+
}
|
1650 |
+
}
|
1651 |
+
layer {
|
1652 |
+
name: "conv9_2_mbox_conf_perm"
|
1653 |
+
type: "Permute"
|
1654 |
+
bottom: "conv9_2_mbox_conf"
|
1655 |
+
top: "conv9_2_mbox_conf_perm"
|
1656 |
+
permute_param {
|
1657 |
+
order: 0
|
1658 |
+
order: 2
|
1659 |
+
order: 3
|
1660 |
+
order: 1
|
1661 |
+
}
|
1662 |
+
}
|
1663 |
+
layer {
|
1664 |
+
name: "conv9_2_mbox_conf_flat"
|
1665 |
+
type: "Flatten"
|
1666 |
+
bottom: "conv9_2_mbox_conf_perm"
|
1667 |
+
top: "conv9_2_mbox_conf_flat"
|
1668 |
+
flatten_param {
|
1669 |
+
axis: 1
|
1670 |
+
}
|
1671 |
+
}
|
1672 |
+
layer {
|
1673 |
+
name: "conv9_2_mbox_priorbox"
|
1674 |
+
type: "PriorBox"
|
1675 |
+
bottom: "conv9_2_h"
|
1676 |
+
bottom: "data"
|
1677 |
+
top: "conv9_2_mbox_priorbox"
|
1678 |
+
prior_box_param {
|
1679 |
+
min_size: 264.0
|
1680 |
+
max_size: 315.0
|
1681 |
+
aspect_ratio: 2
|
1682 |
+
flip: true
|
1683 |
+
clip: false
|
1684 |
+
variance: 0.1
|
1685 |
+
variance: 0.1
|
1686 |
+
variance: 0.2
|
1687 |
+
variance: 0.2
|
1688 |
+
step: 300
|
1689 |
+
offset: 0.5
|
1690 |
+
}
|
1691 |
+
}
|
1692 |
+
layer {
|
1693 |
+
name: "mbox_loc"
|
1694 |
+
type: "Concat"
|
1695 |
+
bottom: "conv4_3_norm_mbox_loc_flat"
|
1696 |
+
bottom: "fc7_mbox_loc_flat"
|
1697 |
+
bottom: "conv6_2_mbox_loc_flat"
|
1698 |
+
bottom: "conv7_2_mbox_loc_flat"
|
1699 |
+
bottom: "conv8_2_mbox_loc_flat"
|
1700 |
+
bottom: "conv9_2_mbox_loc_flat"
|
1701 |
+
top: "mbox_loc"
|
1702 |
+
concat_param {
|
1703 |
+
axis: 1
|
1704 |
+
}
|
1705 |
+
}
|
1706 |
+
layer {
|
1707 |
+
name: "mbox_conf"
|
1708 |
+
type: "Concat"
|
1709 |
+
bottom: "conv4_3_norm_mbox_conf_flat"
|
1710 |
+
bottom: "fc7_mbox_conf_flat"
|
1711 |
+
bottom: "conv6_2_mbox_conf_flat"
|
1712 |
+
bottom: "conv7_2_mbox_conf_flat"
|
1713 |
+
bottom: "conv8_2_mbox_conf_flat"
|
1714 |
+
bottom: "conv9_2_mbox_conf_flat"
|
1715 |
+
top: "mbox_conf"
|
1716 |
+
concat_param {
|
1717 |
+
axis: 1
|
1718 |
+
}
|
1719 |
+
}
|
1720 |
+
layer {
|
1721 |
+
name: "mbox_priorbox"
|
1722 |
+
type: "Concat"
|
1723 |
+
bottom: "conv4_3_norm_mbox_priorbox"
|
1724 |
+
bottom: "fc7_mbox_priorbox"
|
1725 |
+
bottom: "conv6_2_mbox_priorbox"
|
1726 |
+
bottom: "conv7_2_mbox_priorbox"
|
1727 |
+
bottom: "conv8_2_mbox_priorbox"
|
1728 |
+
bottom: "conv9_2_mbox_priorbox"
|
1729 |
+
top: "mbox_priorbox"
|
1730 |
+
concat_param {
|
1731 |
+
axis: 2
|
1732 |
+
}
|
1733 |
+
}
|
1734 |
+
|
1735 |
+
layer {
|
1736 |
+
name: "mbox_conf_reshape"
|
1737 |
+
type: "Reshape"
|
1738 |
+
bottom: "mbox_conf"
|
1739 |
+
top: "mbox_conf_reshape"
|
1740 |
+
reshape_param {
|
1741 |
+
shape {
|
1742 |
+
dim: 0
|
1743 |
+
dim: -1
|
1744 |
+
dim: 2
|
1745 |
+
}
|
1746 |
+
}
|
1747 |
+
}
|
1748 |
+
layer {
|
1749 |
+
name: "mbox_conf_softmax"
|
1750 |
+
type: "Softmax"
|
1751 |
+
bottom: "mbox_conf_reshape"
|
1752 |
+
top: "mbox_conf_softmax"
|
1753 |
+
softmax_param {
|
1754 |
+
axis: 2
|
1755 |
+
}
|
1756 |
+
}
|
1757 |
+
layer {
|
1758 |
+
name: "mbox_conf_flatten"
|
1759 |
+
type: "Flatten"
|
1760 |
+
bottom: "mbox_conf_softmax"
|
1761 |
+
top: "mbox_conf_flatten"
|
1762 |
+
flatten_param {
|
1763 |
+
axis: 1
|
1764 |
+
}
|
1765 |
+
}
|
1766 |
+
|
1767 |
+
layer {
|
1768 |
+
name: "detection_out"
|
1769 |
+
type: "DetectionOutput"
|
1770 |
+
bottom: "mbox_loc"
|
1771 |
+
bottom: "mbox_conf_flatten"
|
1772 |
+
bottom: "mbox_priorbox"
|
1773 |
+
top: "detection_out"
|
1774 |
+
include {
|
1775 |
+
phase: TEST
|
1776 |
+
}
|
1777 |
+
detection_output_param {
|
1778 |
+
num_classes: 2
|
1779 |
+
share_location: true
|
1780 |
+
background_label_id: 0
|
1781 |
+
nms_param {
|
1782 |
+
nms_threshold: 0.45
|
1783 |
+
top_k: 400
|
1784 |
+
}
|
1785 |
+
code_type: CENTER_SIZE
|
1786 |
+
keep_top_k: 200
|
1787 |
+
confidence_threshold: 0.01
|
1788 |
+
clip: 1
|
1789 |
+
}
|
1790 |
+
}
|
face_detection_yunet_2023mar.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f2383e4dd3cfbb4553ea8718107fc0423210dc964f9f4280604804ed2552fa4
|
3 |
+
size 232589
|
haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.2.2
|
2 |
+
altair==5.5.0
|
3 |
+
astunparse==1.6.3
|
4 |
+
attrs==25.3.0
|
5 |
+
blinker==1.9.0
|
6 |
+
cachetools==5.5.2
|
7 |
+
certifi==2025.4.26
|
8 |
+
charset-normalizer==3.4.2
|
9 |
+
click==8.1.8
|
10 |
+
filelock==3.18.0
|
11 |
+
flatbuffers==25.2.10
|
12 |
+
fsspec==2025.3.2
|
13 |
+
gast==0.6.0
|
14 |
+
gitdb==4.0.12
|
15 |
+
GitPython==3.1.44
|
16 |
+
google-pasta==0.2.0
|
17 |
+
grpcio==1.71.0
|
18 |
+
h5py==3.13.0
|
19 |
+
idna==3.10
|
20 |
+
importlib_metadata==8.7.0
|
21 |
+
Jinja2==3.1.6
|
22 |
+
jsonschema==4.23.0
|
23 |
+
jsonschema-specifications==2025.4.1
|
24 |
+
keras==3.9.2
|
25 |
+
libclang==18.1.1
|
26 |
+
Markdown==3.8
|
27 |
+
markdown-it-py==3.0.0
|
28 |
+
MarkupSafe==3.0.2
|
29 |
+
mdurl==0.1.2
|
30 |
+
ml_dtypes==0.5.1
|
31 |
+
mpmath==1.3.0
|
32 |
+
namex==0.0.9
|
33 |
+
narwhals==1.39.0
|
34 |
+
networkx==3.2.1
|
35 |
+
numpy==2.0.2
|
36 |
+
opencv-python==4.11.0.86
|
37 |
+
opt_einsum==3.4.0
|
38 |
+
optree==0.15.0
|
39 |
+
packaging==24.2
|
40 |
+
pandas==2.2.3
|
41 |
+
pillow==11.2.1
|
42 |
+
protobuf==5.29.4
|
43 |
+
pyarrow==20.0.0
|
44 |
+
pydeck==0.9.1
|
45 |
+
Pygments==2.19.1
|
46 |
+
python-dateutil==2.9.0.post0
|
47 |
+
pytz==2025.2
|
48 |
+
referencing==0.36.2
|
49 |
+
requests==2.32.3
|
50 |
+
rich==14.0.0
|
51 |
+
rpds-py==0.24.0
|
52 |
+
six==1.17.0
|
53 |
+
smmap==5.0.2
|
54 |
+
streamlit==1.45.1
|
55 |
+
sympy==1.14.0
|
56 |
+
tenacity==9.1.2
|
57 |
+
tensorboard==2.19.0
|
58 |
+
tensorboard-data-server==0.7.2
|
59 |
+
tensorflow==2.19.0
|
60 |
+
tensorflow-io-gcs-filesystem==0.37.1
|
61 |
+
termcolor==3.1.0
|
62 |
+
toml==0.10.2
|
63 |
+
torch==2.7.0
|
64 |
+
tornado==6.4.2
|
65 |
+
typing_extensions==4.13.2
|
66 |
+
tzdata==2025.2
|
67 |
+
urllib3==2.4.0
|
68 |
+
Werkzeug==3.1.3
|
69 |
+
wrapt==1.17.2
|
70 |
+
zipp==3.21.0
|
res10_300x300_ssd_iter_140000.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a56a11a57a4a295956b0660b4a3d76bbdca2206c4961cea8efe7d95c7cb2f2d
|
3 |
+
size 10666211
|
sample_videos/Sample.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb48fbbfe295461889585a2c3ffe592ba208d2501018b9517f158108f11acd10
|
3 |
+
size 11293922
|