from torch import nn from transformers import AutoModel, AutoProcessor from pathlib import Path import torch import torch.amp.autocast_mode from PIL import Image import os import torchvision.transforms.functional as TVF import base64 import io class ImageAdapter(nn.Module): def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool): super().__init__() self.deep_extract = deep_extract if self.deep_extract: input_features = input_features * 5 self.linear1 = nn.Linear(input_features, output_features) self.activation = nn.GELU() self.linear2 = nn.Linear(output_features, output_features) self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features) self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features)) self.other_tokens = nn.Embedding(3, output_features) self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) def forward(self, vision_outputs: torch.Tensor): if self.deep_extract: x = torch.concat(( vision_outputs[-2], vision_outputs[3], vision_outputs[7], vision_outputs[13], vision_outputs[20], ), dim=-1) assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}" else: x = vision_outputs[-2] x = self.ln1(x) if self.pos_emb is not None: assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}" x = x + self.pos_emb x = self.linear1(x) x = self.activation(x) x = self.linear2(x) other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1)) assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}" x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1) return x def get_eot_embedding(self): return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0) class ImageAdapter(nn.Module): def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool): super().__init__() self.deep_extract = deep_extract if self.deep_extract: input_features = input_features * 5 self.linear1 = nn.Linear(input_features, output_features) self.activation = nn.GELU() self.linear2 = nn.Linear(output_features, output_features) self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features) self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features)) self.other_tokens = nn.Embedding(3, output_features) self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) def forward(self, vision_outputs: torch.Tensor): if self.deep_extract: x = torch.concat(( vision_outputs[-2], vision_outputs[3], vision_outputs[7], vision_outputs[13], vision_outputs[20], ), dim=-1) assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}" else: x = vision_outputs[-2] x = self.ln1(x) if self.pos_emb is not None: assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}" x = x + self.pos_emb x = self.linear1(x) x = self.activation(x) x = self.linear2(x) other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1)) assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}" x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1) return x def get_eot_embedding(self): return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)