Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from transformers import pipeline
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
from docx import Document
|
8 |
+
import io
|
9 |
+
|
10 |
+
class CarbonCreditDocGenerator:
|
11 |
+
def __init__(self):
|
12 |
+
self.sbert_model = SentenceTransformer('all-MiniLM-L6-v2')
|
13 |
+
self.nlg_pipeline = pipeline("text-generation", model="gpt2", max_length=500)
|
14 |
+
|
15 |
+
# Load your knowledge base here
|
16 |
+
self.knowledge_base = self.load_knowledge_base()
|
17 |
+
|
18 |
+
def load_knowledge_base(self):
|
19 |
+
# This should load your carbon credit domain knowledge
|
20 |
+
return [
|
21 |
+
"Carbon credits represent the reduction of one metric ton of carbon dioxide emissions.",
|
22 |
+
"Afforestation projects involve planting trees in areas where there were none before.",
|
23 |
+
"The Verified Carbon Standard (VCS) is a widely recognized certification for carbon credits.",
|
24 |
+
"Carbon credit projects must demonstrate additionality, meaning the reductions wouldn't have occurred without the project.",
|
25 |
+
"Monitoring, reporting, and verification (MRV) are crucial components of carbon credit projects.",
|
26 |
+
# Add more knowledge base entries...
|
27 |
+
]
|
28 |
+
|
29 |
+
def process_input_data(self, input_text):
|
30 |
+
# In a real scenario, you'd parse the input document more thoroughly
|
31 |
+
lines = input_text.split('\n')
|
32 |
+
data = {}
|
33 |
+
for line in lines:
|
34 |
+
if ':' in line:
|
35 |
+
key, value = line.split(':', 1)
|
36 |
+
data[key.strip()] = value.strip()
|
37 |
+
return data
|
38 |
+
|
39 |
+
def retrieve_relevant_knowledge(self, query, top_k=3):
|
40 |
+
query_embedding = self.sbert_model.encode([query])[0]
|
41 |
+
knowledge_embeddings = self.sbert_model.encode(self.knowledge_base)
|
42 |
+
|
43 |
+
similarities = cosine_similarity([query_embedding], knowledge_embeddings)[0]
|
44 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
45 |
+
|
46 |
+
return [self.knowledge_base[i] for i in top_indices]
|
47 |
+
|
48 |
+
def generate_section_content(self, section_title, input_data, max_length=500):
|
49 |
+
query = f"Generate content for the '{section_title}' section of a carbon credit document."
|
50 |
+
relevant_knowledge = self.retrieve_relevant_knowledge(query)
|
51 |
+
|
52 |
+
context = f"Input data: {input_data}\n\nRelevant knowledge: {' '.join(relevant_knowledge)}"
|
53 |
+
prompt = f"{context}\n\nTask: {query}\n\nContent:"
|
54 |
+
|
55 |
+
generated_text = self.nlg_pipeline(prompt, max_length=max_length, num_return_sequences=1)[0]['generated_text']
|
56 |
+
|
57 |
+
# Apply corrective RAG
|
58 |
+
corrected_text = self.apply_corrective_rag(generated_text, input_data, relevant_knowledge)
|
59 |
+
|
60 |
+
return corrected_text
|
61 |
+
|
62 |
+
def apply_corrective_rag(self, generated_text, input_data, relevant_knowledge):
|
63 |
+
# This is a simplified version of corrective RAG
|
64 |
+
corrected_text = generated_text
|
65 |
+
|
66 |
+
# Ensure all input data is represented
|
67 |
+
for key, value in input_data.items():
|
68 |
+
if value.lower() not in corrected_text.lower():
|
69 |
+
corrected_text += f" {key}: {value}."
|
70 |
+
|
71 |
+
# Ensure relevant knowledge is incorporated
|
72 |
+
for knowledge in relevant_knowledge:
|
73 |
+
if knowledge.lower() not in corrected_text.lower():
|
74 |
+
corrected_text += f" {knowledge}"
|
75 |
+
|
76 |
+
return corrected_text
|
77 |
+
|
78 |
+
def create_document(self, input_text):
|
79 |
+
doc = Document()
|
80 |
+
doc.add_heading('Carbon Credit Project Document', 0)
|
81 |
+
|
82 |
+
input_data = self.process_input_data(input_text)
|
83 |
+
|
84 |
+
sections = [
|
85 |
+
"Executive Summary",
|
86 |
+
"Certificate Identification",
|
87 |
+
"Emission Reduction Details",
|
88 |
+
"Project Information",
|
89 |
+
"Verification and Certification",
|
90 |
+
"Issuance and Expiration Dates",
|
91 |
+
"Market Type",
|
92 |
+
"Transferability Information",
|
93 |
+
"Legal Framework",
|
94 |
+
"Accountability Measures",
|
95 |
+
"Contact Information"
|
96 |
+
]
|
97 |
+
|
98 |
+
for section in sections:
|
99 |
+
doc.add_heading(section, level=1)
|
100 |
+
content = self.generate_section_content(section, input_data)
|
101 |
+
doc.add_paragraph(content)
|
102 |
+
|
103 |
+
return doc
|
104 |
+
|
105 |
+
def generate_document(self, input_text):
|
106 |
+
doc = self.create_document(input_text)
|
107 |
+
|
108 |
+
# Save the document to a BytesIO object
|
109 |
+
doc_io = io.BytesIO()
|
110 |
+
doc.save(doc_io)
|
111 |
+
doc_io.seek(0)
|
112 |
+
|
113 |
+
return doc_io
|
114 |
+
|
115 |
+
# Streamlit app
|
116 |
+
def main():
|
117 |
+
st.title("Carbon Credit Document Generator")
|
118 |
+
|
119 |
+
# File uploader
|
120 |
+
uploaded_file = st.file_uploader("Choose a text file", type="txt")
|
121 |
+
|
122 |
+
if uploaded_file is not None:
|
123 |
+
# Read the file
|
124 |
+
input_text = uploaded_file.read().decode("utf-8")
|
125 |
+
st.text_area("Input Data", input_text, height=200)
|
126 |
+
|
127 |
+
if st.button("Generate Document"):
|
128 |
+
generator = CarbonCreditDocGenerator()
|
129 |
+
|
130 |
+
with st.spinner("Generating document..."):
|
131 |
+
doc_io = generator.generate_document(input_text)
|
132 |
+
|
133 |
+
st.success("Document generated successfully!")
|
134 |
+
|
135 |
+
# Provide download button
|
136 |
+
st.download_button(
|
137 |
+
label="Download Carbon Credit Document",
|
138 |
+
data=doc_io.getvalue(),
|
139 |
+
file_name="carbon_credit_document.docx",
|
140 |
+
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
141 |
+
)
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
main()
|