Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import easyocr
|
5 |
+
import re
|
6 |
+
from langdetect import detect_langs
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
|
10 |
+
def load_easyocr_reader():
|
11 |
+
return easyocr.Reader(['hi', 'en'], gpu=False)
|
12 |
+
|
13 |
+
def preprocess_image(image):
|
14 |
+
img_array = np.array(image.convert('RGB'))
|
15 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
16 |
+
denoised = cv2.fastNlMeansDenoising(gray, None, 10, 7, 21)
|
17 |
+
thresh = cv2.adaptiveThreshold(denoised, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
|
18 |
+
kernel = np.ones((1, 1), np.uint8)
|
19 |
+
dilated = cv2.dilate(thresh, kernel, iterations=1)
|
20 |
+
return dilated
|
21 |
+
|
22 |
+
def perform_easyocr(image, reader):
|
23 |
+
preprocessed_image = preprocess_image(image)
|
24 |
+
results = reader.readtext(preprocessed_image, paragraph=True, detail=0,
|
25 |
+
contrast_ths=0.2, adjust_contrast=0.5,
|
26 |
+
add_margin=0.1, width_ths=0.7, height_ths=0.7)
|
27 |
+
extracted_text = ' '.join(results)
|
28 |
+
return extracted_text
|
29 |
+
|
30 |
+
def detect_languages(text):
|
31 |
+
cleaned_text = re.sub(r'[^a-zA-Z\u0900-\u097F\s]', '', text)
|
32 |
+
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
|
33 |
+
|
34 |
+
if not cleaned_text:
|
35 |
+
return []
|
36 |
+
try:
|
37 |
+
langs = detect_langs(cleaned_text)
|
38 |
+
detected = []
|
39 |
+
for lang in langs:
|
40 |
+
if lang.lang == 'hi' and lang.prob > 0.1:
|
41 |
+
detected.append('Hindi')
|
42 |
+
elif lang.lang == 'en' and lang.prob > 0.1:
|
43 |
+
detected.append('English')
|
44 |
+
return detected
|
45 |
+
except:
|
46 |
+
return fallback_language_check(cleaned_text)
|
47 |
+
|
48 |
+
def fallback_language_check(text):
|
49 |
+
hindi_range = range(0x0900, 0x097F)
|
50 |
+
english_range = range(0x0041, 0x007A)
|
51 |
+
|
52 |
+
has_hindi = any(ord(char) in hindi_range for char in text)
|
53 |
+
has_english = any(ord(char) in english_range for char in text)
|
54 |
+
|
55 |
+
detected = []
|
56 |
+
if has_hindi:
|
57 |
+
detected.append('Hindi')
|
58 |
+
if has_english:
|
59 |
+
detected.append('English')
|
60 |
+
|
61 |
+
return detected
|
62 |
+
|
63 |
+
def highlight_text(text, keywords):
|
64 |
+
for keyword in keywords:
|
65 |
+
# Highlight the keyword by wrapping it with a span tag
|
66 |
+
text = re.sub(f'({re.escape(keyword)})', r'<span style="background-color: yellow;">\1</span>', text, flags=re.IGNORECASE)
|
67 |
+
return text
|
68 |
+
|
69 |
+
def main():
|
70 |
+
st.title("OCR for Hindi and English")
|
71 |
+
|
72 |
+
easyocr_reader = load_easyocr_reader()
|
73 |
+
|
74 |
+
# Initialize session state variables
|
75 |
+
if 'extracted_text' not in st.session_state:
|
76 |
+
st.session_state.extracted_text = ""
|
77 |
+
|
78 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
79 |
+
if uploaded_file is not None:
|
80 |
+
image = Image.open(uploaded_file)
|
81 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
82 |
+
|
83 |
+
if st.button('Perform OCR'):
|
84 |
+
with st.spinner('Processing...'):
|
85 |
+
st.session_state.extracted_text = perform_easyocr(image, easyocr_reader)
|
86 |
+
|
87 |
+
st.subheader("Extracted Text:")
|
88 |
+
st.write(st.session_state.extracted_text)
|
89 |
+
|
90 |
+
languages_detected = detect_languages(st.session_state.extracted_text)
|
91 |
+
if languages_detected:
|
92 |
+
st.write("Detected languages:", ', '.join(languages_detected))
|
93 |
+
else:
|
94 |
+
st.write("No languages detected.")
|
95 |
+
|
96 |
+
if st.session_state.extracted_text: # Check if OCR has been performed
|
97 |
+
st.subheader("Search in Extracted Text")
|
98 |
+
search_query = st.text_input("Enter keywords to search:", "")
|
99 |
+
if search_query:
|
100 |
+
keywords = search_query.split()
|
101 |
+
highlighted_text = highlight_text(st.session_state.extracted_text, keywords)
|
102 |
+
st.markdown(highlighted_text, unsafe_allow_html=True)
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
main()
|