Spaces:
Sleeping
Sleeping
File size: 10,029 Bytes
ac84435 4241407 ac84435 4241407 ac84435 4241407 ac84435 4241407 ac84435 4241407 ac84435 4241407 ac84435 4241407 ac84435 4241407 ac84435 4241407 ac84435 4241407 ac84435 4241407 ac84435 59c1f3b ac84435 501e4ed ac84435 501e4ed ac84435 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import gradio as gr
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
# EuroSAT class names (10 land cover classes)
EUROSAT_CLASSES = [
"AnnualCrop",
"Forest",
"HerbaceousVegetation",
"Highway",
"Industrial",
"Pasture",
"PermanentCrop",
"Residential",
"River",
"SeaLake"
]
# Class descriptions for better user understanding
CLASS_DESCRIPTIONS = {
"AnnualCrop": "πΎ Agricultural land with annual crops",
"Forest": "π² Dense forest areas with trees",
"HerbaceousVegetation": "πΏ Areas with herbaceous vegetation",
"Highway": "π£οΈ Major roads and highway infrastructure",
"Industrial": "π Industrial areas and facilities",
"Pasture": "π Pasture land for livestock",
"PermanentCrop": "π Permanent crop areas (vineyards, orchards)",
"Residential": "ποΈ Residential areas and neighborhoods",
"River": "ποΈ Rivers and waterways",
"SeaLake": "ποΈ Seas, lakes, and large water bodies"
}
class EuroSATClassifier:
def __init__(self, model_name="Adilbai/EuroSAT-Swin"):
self.model_name = model_name
self.processor = None
self.model = None
self.load_model()
def load_model(self):
"""Load the model and processor"""
try:
self.processor = AutoImageProcessor.from_pretrained(self.model_name)
self.model = AutoModelForImageClassification.from_pretrained(self.model_name)
self.model.eval()
print(f"β
Model {self.model_name} loaded successfully!")
except Exception as e:
print(f"β Error loading model: {e}")
# Fallback to a generic model if the specific one fails
self.processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
self.model = AutoModelForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
def predict(self, image):
"""Make prediction on the input image"""
if image is None:
return None, None, "Please upload an image first!"
try:
# Preprocess the image
inputs = self.processor(images=image, return_tensors="pt")
# Make prediction
with torch.no_grad():
outputs = self.model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get top predictions
probabilities = predictions[0].numpy()
# Create results dictionary
results = {}
for i, class_name in enumerate(EUROSAT_CLASSES):
if i < len(probabilities):
results[class_name] = float(probabilities[i])
else:
results[class_name] = 0.0
# Sort by confidence
sorted_results = dict(sorted(results.items(), key=lambda x: x[1], reverse=True))
# Get top prediction
top_class = list(sorted_results.keys())[0]
top_confidence = list(sorted_results.values())[0]
# Create confidence plot
confidence_plot = self.create_confidence_plot(sorted_results)
# Format result text
result_text = f"π― **Prediction: {top_class}**\n\n"
result_text += f"π **Confidence: {top_confidence:.1%}**\n\n"
result_text += f"π **Description: {CLASS_DESCRIPTIONS.get(top_class, 'Land cover classification')}**\n\n"
result_text += "### Top 3 Predictions:\n"
for i, (class_name, confidence) in enumerate(list(sorted_results.items())[:3]):
result_text += f"{i+1}. **{class_name}**: {confidence:.1%}\n"
return sorted_results, confidence_plot, result_text
except Exception as e:
error_msg = f"β Error during prediction: {str(e)}"
return None, None, error_msg
def create_confidence_plot(self, results):
"""Create a clean confidence plot using Plotly"""
classes = list(results.keys())
confidences = [results[cls] * 100 for cls in classes]
# Use consistent solid colors (green for top, blue for others)
colors = ['#2E8B57' if i == 0 else '#4682B4' for i in range(len(classes))]
fig = go.Figure(data=[
go.Bar(
x=confidences,
y=classes,
orientation='h',
marker_color=colors,
text=[f'{conf:.1f}%' for conf in confidences],
textposition='inside',
textfont=dict(color='white', size=12),
)
])
fig.update_layout(
title="π― Classification Confidence Scores",
xaxis_title="Confidence (%)",
yaxis_title="Land Cover Classes",
height=500,
margin=dict(l=10, r=10, t=40, b=10),
plot_bgcolor='white',
paper_bgcolor='white',
font=dict(family="Arial", size=12, color="#333"),
xaxis=dict(
gridcolor='rgba(0,0,0,0.05)',
showgrid=True,
range=[0, 100]
),
yaxis=dict(
gridcolor='rgba(0,0,0,0.05)',
showgrid=True,
autorange="reversed"
)
)
return fig
# Initialize the classifier
classifier = EuroSATClassifier()
def classify_image(image):
"""Main classification function for Gradio interface"""
return classifier.predict(image)
def get_sample_images():
"""Return some sample image descriptions"""
return """
### πΌοΈ Try these types of satellite images:
- **πΎ Agricultural fields** - Crop lands and farmland
- **π² Forest areas** - Dense tree coverage
- **ποΈ Residential zones** - Urban neighborhoods
- **π Industrial sites** - Factories and industrial areas
- **π£οΈ Highway systems** - Major roads and intersections
- **π§ Water bodies** - Rivers, lakes, and seas
- **πΏ Natural vegetation** - Grasslands and natural areas
Upload a satellite/aerial image to see the land cover classification!
"""
# Custom CSS for better styling
custom_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.main-header {
text-align: center;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 10px;
margin-bottom: 2rem;
}
.upload-area {
border: 2px dashed #667eea;
border-radius: 10px;
padding: 2rem;
text-align: center;
background: rgba(0, 0, 0, 0.43);
}
.result-text {
background: #070605;
padding: 1.5rem;
border-radius: 10px;
border-left: 4px solid #667eea;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, title="π°οΈ EuroSAT Land Cover Classifier") as demo:
gr.HTML("""
<div class="main-header">
<h1>π°οΈ EuroSAT Land Cover Classifier</h1>
<p>Advanced satellite image classification using Swin Transformer</p>
<p><strong>Model:</strong> Adilbai/EuroSAT-Swin | <strong>Dataset:</strong> EuroSAT (10 land cover classes)</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>π€ Upload Satellite Image</h3>")
image_input = gr.Image(
label="Upload a satellite/aerial image",
type="pil",
height=400,
elem_classes="upload-area"
)
classify_btn = gr.Button(
"π Classify Land Cover",
variant="primary",
size="lg"
)
gr.HTML("<div style='margin-top: 2rem;'>")
gr.Markdown(get_sample_images())
gr.HTML("</div>")
with gr.Column(scale=1):
gr.HTML("<h3>π Classification Results</h3>")
result_text = gr.Markdown(
value="Upload an image and click 'Classify Land Cover' to see results!",
elem_classes="result-text"
)
confidence_plot = gr.Plot(
label="Confidence Scores",
)
# Hidden component to store raw results
raw_results = gr.JSON(visible=False)
# Event handlers
classify_btn.click(
fn=classify_image,
inputs=[image_input],
outputs=[raw_results, confidence_plot, result_text]
)
# Also trigger on image upload
image_input.change(
fn=classify_image,
inputs=[image_input],
outputs=[raw_results, confidence_plot, result_text]
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 3rem; padding: 2rem; background: #070605; border-radius: 10px;">
<h4>π¬ About This Model</h4>
<p>This classifier uses the <strong>Swin Transformer</strong> architecture trained on the <strong>EuroSAT dataset</strong>.</p>
<p>The EuroSAT dataset contains <strong>27,000 satellite images</strong> from <strong>34 European countries</strong>, covering <strong>10 different land cover classes</strong>.</p>
<p>Perfect for environmental monitoring, urban planning, and agricultural analysis! π</p>
<br>
<p><strong>Model:</strong> <a href="https://huggingface.co/Adilbai/EuroSAT-Swin" target="_blank">Adilbai/EuroSAT-Swin</a></p>
</div>
""")
# Launch the app
if __name__ == "__main__":
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |