Spaces:
Runtime error
Runtime error
Commit
·
471d63e
1
Parent(s):
eef0cbd
Delete Dog Breed Prediction Streamlit App/main_app.py
Browse files
Dog Breed Prediction Streamlit App/main_app.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
#Library imports
|
2 |
-
import numpy as np
|
3 |
-
import streamlit as st
|
4 |
-
import cv2
|
5 |
-
from keras.models import load_model
|
6 |
-
|
7 |
-
|
8 |
-
#Loading the Model
|
9 |
-
model = load_model('dog_breed.h5')
|
10 |
-
|
11 |
-
#Name of Classes
|
12 |
-
CLASS_NAMES = ['Scottish Deerhound','Maltese Dog','Bernese Mountain Dog']
|
13 |
-
|
14 |
-
#Setting Title of App
|
15 |
-
st.title("Dog Breed Prediction")
|
16 |
-
st.markdown("Upload an image of the dog")
|
17 |
-
|
18 |
-
#Uploading the dog image
|
19 |
-
dog_image = st.file_uploader("Choose an image...", type="png")
|
20 |
-
submit = st.button('Predict')
|
21 |
-
#On predict button click
|
22 |
-
if submit:
|
23 |
-
|
24 |
-
|
25 |
-
if dog_image is not None:
|
26 |
-
|
27 |
-
# Convert the file to an opencv image.
|
28 |
-
file_bytes = np.asarray(bytearray(dog_image.read()), dtype=np.uint8)
|
29 |
-
opencv_image = cv2.imdecode(file_bytes, 1)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# Displaying the image
|
34 |
-
st.image(opencv_image, channels="BGR")
|
35 |
-
#Resizing the image
|
36 |
-
opencv_image = cv2.resize(opencv_image, (224,224))
|
37 |
-
#Convert image to 4 Dimension
|
38 |
-
opencv_image.shape = (1,224,224,3)
|
39 |
-
#Make Prediction
|
40 |
-
Y_pred = model.predict(opencv_image)
|
41 |
-
|
42 |
-
st.title(str("The Dog Breed is "+CLASS_NAMES[np.argmax(Y_pred)]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|