AdityaRatan's picture
Update app.py
d14a34d verified
raw
history blame
27.6 kB
import gradio as gr
import pandas as pd
import google.generativeai as genai
import joblib
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
import plotly.express as px
import plotly.graph_objects as go
import tempfile
import os
from datetime import datetime
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Configure Gemini API
GEMINI_API_KEY = os.getenv("gemini_api")
if not GEMINI_API_KEY:
raise ValueError("GEMINI_API_KEY environment variable not found")
genai.configure(api_key=GEMINI_API_KEY)
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 8192,
}
model = genai.GenerativeModel(
model_name="gemini-pro",
generation_config=generation_config,
)
chat_model = genai.GenerativeModel("gemini-pro")
# Enhanced CSS for better styling
CUSTOM_CSS = '''
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
padding: 20px !important;
background-color: #1a1a1a !important;
color: #ffffff !important;
}
.main-header {
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%) !important;
color: white !important;
padding: 30px !important;
border-radius: 15px !important;
margin-bottom: 30px !important;
text-align: center !important;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2) !important;
}
.app-title {
font-size: 2.5em !important;
font-weight: bold !important;
margin-bottom: 10px !important;
background: linear-gradient(90deg, #ffffff, #3498DB) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3) !important;
}
.app-subtitle {
font-size: 1.3em !important;
color: #89CFF0 !important;
margin-bottom: 15px !important;
font-weight: 500 !important;
}
.app-description {
font-size: 1.1em !important;
color: #B0C4DE !important;
margin-bottom: 20px !important;
line-height: 1.5 !important;
}
.creator-info {
font-size: 1.2em !important;
color: #3498DB !important;
margin-top: 15px !important;
padding: 10px !important;
border-top: 2px solid rgba(52, 152, 219, 0.3) !important;
font-style: italic !important;
}
.status-box {
background: #363636 !important;
border-left: 4px solid #3498DB !important;
padding: 15px !important;
margin: 10px 0 !important;
border-radius: 0 5px 5px 0 !important;
color: #ffffff !important;
}
.chart-container {
background: #2d2d2d !important;
padding: 20px !important;
border-radius: 10px !important;
box-shadow: 0 2px 4px rgba(0,0,0,0.2) !important;
color: #ffffff !important;
}
.chat-container {
height: 400px !important;
overflow-y: auto !important;
border: 1px solid #404040 !important;
border-radius: 10px !important;
padding: 15px !important;
background: #2d2d2d !important;
color: #ffffff !important;
}
.file-upload {
border: 2px dashed #404040 !important;
border-radius: 10px !important;
padding: 20px !important;
text-align: center !important;
background: #2d2d2d !important;
color: #ffffff !important;
}
.result-box {
background: #363636 !important;
border: 1px solid #404040 !important;
border-radius: 10px !important;
padding: 20px !important;
margin-top: 15px !important;
color: #ffffff !important;
}
.tab-content {
background: #2d2d2d !important;
padding: 20px !important;
border-radius: 10px !important;
box-shadow: 0 2px 4px rgba(0,0,0,0.2) !important;
color: #ffffff !important;
}
input, select, textarea {
background: #363636 !important;
color: #ffffff !important;
border: 1px solid #404040 !important;
}
input:focus, select:focus, textarea:focus {
border-color: #3498DB !important;
box-shadow: 0 0 0 2px rgba(52, 152, 219, 0.2) !important;
}
.action-button {
background: #3498DB !important;
color: white !important;
border: none !important;
padding: 10px 20px !important;
border-radius: 5px !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
}
.action-button:hover {
background: #2980B9 !important;
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
}
.footer {
text-align: center !important;
padding: 20px !important;
margin-top: 40px !important;
border-top: 1px solid #404040 !important;
color: #888888 !important;
}
.tabs {
background: #2d2d2d !important;
border-radius: 10px !important;
padding: 10px !important;
}
.tab-selected {
background: #3498DB !important;
color: white !important;
}
.gr-box {
background: #2d2d2d !important;
border: 1px solid #404040 !important;
}
.gr-text-input {
background: #363636 !important;
color: #ffffff !important;
}
.gr-checkbox {
border-color: #404040 !important;
}
.gr-checkbox:checked {
background-color: #3498DB !important;
}
.gr-button-primary {
background: #3498DB !important;
color: white !important;
}
.gr-button-secondary {
background: #404040 !important;
color: white !important;
}
'''
class SupplyChainState:
def __init__(self):
self.sales_df = None
self.supplier_df = None
self.text_data = None
self.chat_history = []
self.analysis_results = {}
self.freight_predictions = []
# Load the XGBoost model
self.model_path = "optimized_xgboost_model.pkl"
try:
self.freight_model = joblib.load(self.model_path)
except Exception as e:
print(f"Warning: Could not load freight prediction model from {self.model_path}: {e}")
self.freight_model = None
def process_uploaded_data(state, sales_file, supplier_file, text_data):
"""Process uploaded files and store in state"""
try:
if sales_file is not None:
state.sales_df = pd.read_csv(sales_file.name)
if supplier_file is not None:
state.supplier_df = pd.read_excel(supplier_file.name)
state.text_data = text_data
return "βœ… Data processed successfully"
except Exception as e:
return f'❌ Error processing data: {str(e)}'
def perform_demand_forecasting(state):
"""Perform demand forecasting using Gemini"""
if state.sales_df is None:
return "Error: No sales data provided", None, "Please upload sales data first"
try:
sales_summary = state.sales_df.describe().to_string()
prompt = f"""Analyze the following sales data summary and provide:
1. A detailed demand forecast for the next quarter
2. Key trends and seasonality patterns
3. Actionable recommendations
Data Summary:
{sales_summary}
Please structure your response with clear sections for Forecast, Trends, and Recommendations."""
response = model.generate_content(prompt)
analysis_text = response.text
# Create visualization
fig = px.line(state.sales_df, title='Historical Sales Data and Forecast')
fig.update_layout(
template='plotly_dark',
title_x=0.5,
title_font_size=20,
showlegend=True,
hovermode='x',
paper_bgcolor='#2d2d2d',
plot_bgcolor='#363636',
font=dict(color='white')
)
return analysis_text, fig, "βœ… Analysis completed successfully"
except Exception as e:
return f"❌ Error in demand forecasting: {str(e)}", None, "Analysis failed"
def perform_risk_assessment(state):
"""Perform risk assessment using Gemini"""
if state.supplier_df is None:
return "Error: No supplier data provided", None, "Please upload supplier data first"
try:
supplier_summary = state.supplier_df.describe().to_string()
prompt = f"""Perform a comprehensive risk assessment based on:
Supplier Data Summary:
{supplier_summary}
Additional Context:
{state.text_data if state.text_data else 'No additional context provided'}
Please provide:
1. Risk scoring for each supplier
2. Identified risk factors
3. Mitigation recommendations"""
response = model.generate_content(prompt)
analysis_text = response.text
# Create risk visualization
fig = px.scatter(state.supplier_df, title='Supplier Risk Assessment')
fig.update_layout(
template='plotly_dark',
title_x=0.5,
title_font_size=20,
showlegend=True,
hovermode='closest',
paper_bgcolor='#2d2d2d',
plot_bgcolor='#363636',
font=dict(color='white')
)
return analysis_text, fig, "βœ… Risk assessment completed"
except Exception as e:
return f"❌ Error in risk assessment: {str(e)}", None, "Assessment failed"
def chat_with_navigator(state, message):
"""Handle chat interactions with the SupplyChainAI Navigator"""
try:
# Prepare context from available data
context = "Available data and analysis:\n"
if state.sales_df is not None:
context += f"- Sales data with {len(state.sales_df)} records\n"
if state.supplier_df is not None:
context += f"- Supplier data with {len(state.supplier_df)} records\n"
if state.text_data:
context += "- Additional context from text data\n"
if state.freight_predictions:
context += f"- Recent freight predictions: {state.freight_predictions[-5:]}\n"
# Add analysis results
if state.analysis_results:
context += "\nRecent analysis results:\n"
for analysis_type, results in state.analysis_results.items():
context += f"- {analysis_type} completed\n"
prompt = f"""You are SupplyChainAI Navigator's assistant. Help the user with supply chain analysis,
including demand forecasting, risk assessment, and freight cost predictions.
Available Context:
{context}
Chat History:
{str(state.chat_history[-3:]) if state.chat_history else 'No previous messages'}
User message: {message}
Provide a helpful response based on the available data and analysis results."""
response = chat_model.generate_content(prompt)
state.chat_history.append(("user", message))
state.chat_history.append(("assistant", response.text))
return state.chat_history
except Exception as e:
return [(msg_type, msg) for msg_type, msg in state.chat_history] + [("assistant", f"Error: {str(e)}")]
def predict_freight_cost(state, weight, line_item_value, cost_per_kg,
shipment_mode, air_charter_weight, ocean_weight, truck_weight,
air_charter_value, ocean_value, truck_value):
"""Predict freight cost using the loaded model"""
if state.freight_model is None:
return "Error: Freight prediction model not loaded"
try:
features = {
'weight (kilograms)': weight,
'line item value': line_item_value,
'cost per kilogram': cost_per_kg,
'shipment mode_Air Charter_weight': air_charter_weight if "Air" in shipment_mode else 0,
'shipment mode_Ocean_weight': ocean_weight if "Ocean" in shipment_mode else 0,
'shipment mode_Truck_weight': truck_weight if "Truck" in shipment_mode else 0,
'shipment mode_Air Charter_line_item_value': air_charter_value if "Air" in shipment_mode else 0,
'shipment mode_Ocean_line_item_value': ocean_value if "Ocean" in shipment_mode else 0,
'shipment mode_Truck_line_item_value': truck_value if "Truck" in shipment_mode else 0
}
input_data = pd.DataFrame([features])
prediction = state.freight_model.predict(input_data)
return round(float(prediction[0]), 2)
except Exception as e:
return f"Error making prediction: {str(e)}"
def generate_pdf_report(state, analysis_options):
"""Generate PDF report with analysis results"""
try:
temp_dir = tempfile.mkdtemp()
pdf_path = os.path.join(temp_dir, "supply_chain_report.pdf")
doc = SimpleDocTemplate(pdf_path, pagesize=letter)
styles = getSampleStyleSheet()
story = []
# Enhanced title style
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
spaceAfter=30,
textColor=colors.HexColor('#2C3E50')
)
# Add title
story.append(Paragraph("SupplyChainAI Navigator Report", title_style))
story.append(Spacer(1, 12))
# Add timestamp
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
story.append(Paragraph(f"Generated on: {timestamp}", styles['Normal']))
story.append(Spacer(1, 20))
# Add executive summary
story.append(Paragraph("Executive Summary", styles['Heading2']))
summary_text = "This report provides a comprehensive analysis of supply chain data, including demand forecasting, risk assessment, and optimization recommendations."
story.append(Paragraph(summary_text, styles['Normal']))
story.append(Spacer(1, 20))
# Add analysis results
if state.analysis_results:
for analysis_type, results in state.analysis_results.items():
if analysis_type in analysis_options:
story.append(Paragraph(analysis_type, styles['Heading2']))
story.append(Spacer(1, 12))
story.append(Paragraph(results['text'], styles['Normal']))
story.append(Spacer(1, 12))
if 'figure' in results:
img_path = os.path.join(temp_dir, f"{analysis_type.lower()}_plot.png")
results['figure'].write_image(img_path)
story.append(Image(img_path, width=400, height=300))
story.append(Spacer(1, 20))
# Add freight predictions if available
if state.freight_predictions:
story.append(Paragraph("Recent Freight Cost Predictions", styles['Heading2']))
story.append(Spacer(1, 12))
pred_data = [["Prediction #", "Cost (USD)"]]
for i, pred in enumerate(state.freight_predictions[-5:], 1):
pred_data.append([f"Prediction {i}", f"${pred:,.2f}"])
table = Table(pred_data)
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#3498DB')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 14),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.whitesmoke),
('TEXTCOLOR', (0, 1), (-1, -1), colors.black),
('FONTNAME', (0, 1), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 1), (-1, -1), 12),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(table)
story.append(Spacer(1, 20))
# Build PDF
doc.build(story)
return pdf_path
except Exception as e:
print(f"Error generating PDF: {str(e)}")
return None
def run_analyses(state, choices, sales_file, supplier_file, text_data):
"""Run selected analyses"""
results = []
figures = []
status_messages = []
# Process data first
process_status = process_uploaded_data(state, sales_file, supplier_file, text_data)
if "Error" in process_status:
return process_status, None, process_status
for choice in choices:
if "Demand Forecasting" in choice:
text, fig, status = perform_demand_forecasting(state)
results.append(text)
figures.append(fig)
status_messages.append(status)
if text and fig:
state.analysis_results['Demand Forecasting'] = {'text': text, 'figure': fig}
elif "Risk Assessment" in choice:
text, fig, status = perform_risk_assessment(state)
results.append(text)
figures.append(fig)
status_messages.append(status)
if text and fig:
state.analysis_results['Risk Assessment'] = {'text': text, 'figure': fig}
combined_results = "\n\n".join(results)
combined_status = "\n".join(status_messages)
final_figure = figures[-1] if figures else None
return combined_results, final_figure, combined_status
def predict_and_store_freight(state, *args):
"""Predict freight cost and store the result"""
result = predict_freight_cost(state, *args)
if isinstance(result, (int, float)):
state.freight_predictions.append(result)
return result
def create_interface():
"""Create Gradio interface with enhanced UI"""
state = SupplyChainState()
with gr.Blocks(css=CUSTOM_CSS, title="SupplyChainAI Navigator") as demo:
# Header
with gr.Row(elem_classes="main-header"):
with gr.Column():
gr.Markdown("# 🚒 SupplyChainAI Navigator", elem_classes="app-title")
gr.Markdown("### Intelligent Supply Chain Analysis & Optimization", elem_classes="app-subtitle")
gr.Markdown("An AI-powered platform for comprehensive supply chain analytics", elem_classes="app-description")
gr.Markdown("Created by Aditya Ratan", elem_classes="creator-info")
# Main Content Tabs
with gr.Tabs() as tabs:
# Data Upload Tab
with gr.Tab("πŸ“Š Data Upload", elem_classes="tab-content"):
with gr.Row():
with gr.Column(scale=1):
sales_data_upload = gr.File(
file_types=[".csv"],
label="πŸ“ˆ Sales Data (CSV)",
elem_classes="file-upload"
)
with gr.Column(scale=1):
supplier_data_upload = gr.File(
file_types=[".xlsx", ".xls"],
label="🏭 Supplier Data (Excel)",
elem_classes="file-upload"
)
text_input_area = gr.Textbox(
label="πŸ“ Additional Context",
placeholder="Add market updates, news, or other relevant information...",
lines=5
)
with gr.Row():
upload_status = gr.Textbox(
label="Status",
elem_classes="status-box"
)
upload_button = gr.Button(
"πŸ”„ Process Data",
variant="primary",
elem_classes="action-button"
)
# Analysis Tab
with gr.Tab("πŸ” Analysis", elem_classes="tab-content"):
analysis_options = gr.CheckboxGroup(
choices=[
"πŸ“ˆ Demand Forecasting",
"⚠️ Risk Assessment"
],
label="Choose analyses to perform"
)
analyze_button = gr.Button(
"πŸš€ Run Analysis",
variant="primary",
elem_classes="action-button"
)
with gr.Row():
with gr.Column(scale=2):
analysis_output = gr.Textbox(
label="Analysis Results",
elem_classes="result-box"
)
with gr.Column(scale=3):
plot_output = gr.Plot(
label="Visualization",
elem_classes="chart-container"
)
raw_output = gr.Textbox(
label="Processing Status",
elem_classes="status-box"
)
# Freight Cost Prediction Tab
with gr.Tab("πŸ’° Cost Prediction", elem_classes="tab-content"):
with gr.Row():
shipment_mode = gr.Dropdown(
choices=["✈️ Air", "🚒 Ocean", "πŸš› Truck"],
label="Transport Mode",
value="✈️ Air"
)
with gr.Row():
with gr.Column():
weight = gr.Slider(
label="πŸ“¦ Weight (kg)",
minimum=1,
maximum=10000,
step=1,
value=1000
)
with gr.Column():
line_item_value = gr.Slider(
label="πŸ’΅ Item Value (USD)",
minimum=1,
maximum=1000000,
step=1,
value=10000
)
with gr.Column():
cost_per_kg = gr.Slider(
label="πŸ’° Cost per kg (USD)",
minimum=0,
maximum=500,
step=0.1,
value=50
)
# Mode-specific inputs
with gr.Row(visible=False) as air_inputs:
air_charter_weight = gr.Slider(
label="Air Charter Weight",
minimum=0,
maximum=10000
)
air_charter_value = gr.Slider(
label="Air Charter Value",
minimum=0,
maximum=1000000
)
with gr.Row(visible=False) as ocean_inputs:
ocean_weight = gr.Slider(
label="Ocean Weight",
minimum=0,
maximum=10000
)
ocean_value = gr.Slider(
label="Ocean Value",
minimum=0,
maximum=1000000
)
with gr.Row(visible=False) as truck_inputs:
truck_weight = gr.Slider(
label="Truck Weight",
minimum=0,
maximum=10000
)
truck_value = gr.Slider(
label="Truck Value",
minimum=0,
maximum=1000000
)
with gr.Row():
predict_button = gr.Button(
"πŸ” Calculate Cost",
variant="primary",
elem_classes="action-button"
)
freight_result = gr.Number(
label="Predicted Cost (USD)",
elem_classes="result-box"
)
# Chat Tab
with gr.Tab("πŸ’¬ Chat", elem_classes="tab-content"):
chatbot = gr.Chatbot(
label="Chat History",
elem_classes="chat-container",
height=400
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Ask about your supply chain data...",
scale=4
)
chat_button = gr.Button(
"πŸ“€ Send",
variant="primary",
scale=1,
elem_classes="action-button"
)
# Report Tab
with gr.Tab("πŸ“‘ Report", elem_classes="tab-content"):
report_button = gr.Button(
"πŸ“„ Generate Report",
variant="primary",
elem_classes="action-button"
)
report_download = gr.File(
label="Download Report"
)
# Footer
with gr.Row(elem_classes="footer"):
gr.Markdown("Β© 2025 SupplyChainAI Navigator")
# Event Handlers
def update_mode_inputs(mode):
return {
air_inputs: gr.update(visible=mode=="✈️ Air"),
ocean_inputs: gr.update(visible=mode=="🚒 Ocean"),
truck_inputs: gr.update(visible=mode=="πŸš› Truck")
}
# Connect all components
upload_button.click(
fn=lambda *args: process_uploaded_data(state, *args),
inputs=[sales_data_upload, supplier_data_upload, text_input_area],
outputs=[upload_status]
)
analyze_button.click(
fn=lambda *args: run_analyses(state, *args),
inputs=[analysis_options, sales_data_upload, supplier_data_upload, text_input_area],
outputs=[analysis_output, plot_output, raw_output]
)
shipment_mode.change(
fn=update_mode_inputs,
inputs=[shipment_mode],
outputs=[air_inputs, ocean_inputs, truck_inputs]
)
predict_button.click(
fn=lambda *args: predict_and_store_freight(state, *args),
inputs=[
weight, line_item_value, cost_per_kg,
shipment_mode, air_charter_weight, ocean_weight, truck_weight,
air_charter_value, ocean_value, truck_value
],
outputs=[freight_result]
)
chat_button.click(
fn=lambda message: chat_with_navigator(state, message),
inputs=[msg],
outputs=[chatbot]
).then(
fn=lambda: "",
outputs=[msg]
)
report_button.click(
fn=lambda options: generate_pdf_report(state, options),
inputs=[analysis_options],
outputs=[report_download]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=True,
debug=True
)
# Enhanced title