Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -327,6 +327,191 @@ def perform_risk_assessment(state):
|
|
327 |
except Exception as e:
|
328 |
return f"β Error in risk assessment: {str(e)}", None, "Assessment failed"
|
329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
def predict_freight_cost(state, weight, line_item_value, cost_per_kg,
|
331 |
shipment_mode, air_charter_weight, ocean_weight, truck_weight,
|
332 |
air_charter_value, ocean_value, truck_value):
|
@@ -475,12 +660,13 @@ def run_analyses(state, choices, sales_file, supplier_file, text_data):
|
|
475 |
figures = []
|
476 |
status_messages = []
|
477 |
|
|
|
478 |
process_status = process_uploaded_data(state, sales_file, supplier_file, text_data)
|
479 |
if "Error" in process_status:
|
480 |
return process_status, None, process_status
|
481 |
|
482 |
for choice in choices:
|
483 |
-
if "Demand Forecasting" in choice:
|
484 |
text, fig, status = perform_demand_forecasting(state)
|
485 |
results.append(text)
|
486 |
figures.append(fig)
|
@@ -488,16 +674,41 @@ def run_analyses(state, choices, sales_file, supplier_file, text_data):
|
|
488 |
if text and fig:
|
489 |
state.analysis_results['Demand Forecasting'] = {'text': text, 'figure': fig}
|
490 |
|
491 |
-
elif "Risk Assessment" in choice:
|
492 |
text, fig, status = perform_risk_assessment(state)
|
493 |
results.append(text)
|
494 |
figures.append(fig)
|
495 |
status_messages.append(status)
|
496 |
if text and fig:
|
497 |
state.analysis_results['Risk Assessment'] = {'text': text, 'figure': fig}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
|
499 |
combined_results = "\n\n".join(results)
|
500 |
combined_status = "\n".join(status_messages)
|
|
|
501 |
final_figure = figures[-1] if figures else None
|
502 |
|
503 |
return combined_results, final_figure, combined_status
|
@@ -562,7 +773,10 @@ def create_interface():
|
|
562 |
analysis_options = gr.CheckboxGroup(
|
563 |
choices=[
|
564 |
"π Demand Forecasting",
|
565 |
-
"β οΈ Risk Assessment"
|
|
|
|
|
|
|
566 |
],
|
567 |
label="Choose analyses to perform"
|
568 |
)
|
|
|
327 |
except Exception as e:
|
328 |
return f"β Error in risk assessment: {str(e)}", None, "Assessment failed"
|
329 |
|
330 |
+
|
331 |
+
def perform_inventory_optimization(state):
|
332 |
+
"""Perform inventory optimization analysis"""
|
333 |
+
if state.sales_df is None:
|
334 |
+
return "Error: No sales data provided", None, "Please upload sales data first"
|
335 |
+
|
336 |
+
if model is None:
|
337 |
+
return "AI features are currently disabled. Please check your API key configuration.", None, "AI Disabled"
|
338 |
+
|
339 |
+
try:
|
340 |
+
inventory_summary = state.sales_df.describe().to_string()
|
341 |
+
prompt = f"""Analyze the following inventory data and provide:
|
342 |
+
1. Optimal inventory levels
|
343 |
+
2. Reorder points
|
344 |
+
3. Safety stock recommendations
|
345 |
+
4. ABC analysis insights
|
346 |
+
|
347 |
+
Data Summary:
|
348 |
+
{inventory_summary}
|
349 |
+
|
350 |
+
Additional Context:
|
351 |
+
{state.text_data if state.text_data else 'No additional context provided'}
|
352 |
+
|
353 |
+
Please structure your response with clear sections for each aspect."""
|
354 |
+
|
355 |
+
response = model.generate_content(prompt)
|
356 |
+
analysis_text = response.text
|
357 |
+
|
358 |
+
# Create inventory level visualization
|
359 |
+
fig = go.Figure()
|
360 |
+
|
361 |
+
if 'quantity' in state.sales_df.columns:
|
362 |
+
fig.add_trace(go.Scatter(
|
363 |
+
y=state.sales_df['quantity'],
|
364 |
+
name='Inventory Level',
|
365 |
+
line=dict(color='#3498DB')
|
366 |
+
))
|
367 |
+
|
368 |
+
fig.update_layout(
|
369 |
+
title='Inventory Level Analysis',
|
370 |
+
template='plotly_dark',
|
371 |
+
title_x=0.5,
|
372 |
+
title_font_size=20,
|
373 |
+
showlegend=True,
|
374 |
+
hovermode='x',
|
375 |
+
paper_bgcolor='#2d2d2d',
|
376 |
+
plot_bgcolor='#363636',
|
377 |
+
font=dict(color='white')
|
378 |
+
)
|
379 |
+
|
380 |
+
return analysis_text, fig, "β
Inventory optimization completed"
|
381 |
+
except Exception as e:
|
382 |
+
return f"β Error in inventory optimization: {str(e)}", None, "Analysis failed"
|
383 |
+
|
384 |
+
def perform_supplier_performance(state):
|
385 |
+
"""Analyze supplier performance"""
|
386 |
+
if state.supplier_df is None:
|
387 |
+
return "Error: No supplier data provided", None, "Please upload supplier data first"
|
388 |
+
|
389 |
+
if model is None:
|
390 |
+
return "AI features are currently disabled. Please check your API key configuration.", None, "AI Disabled"
|
391 |
+
|
392 |
+
try:
|
393 |
+
supplier_summary = state.supplier_df.describe().to_string()
|
394 |
+
prompt = f"""Analyze supplier performance based on:
|
395 |
+
|
396 |
+
Supplier Data Summary:
|
397 |
+
{supplier_summary}
|
398 |
+
|
399 |
+
Additional Context:
|
400 |
+
{state.text_data if state.text_data else 'No additional context provided'}
|
401 |
+
|
402 |
+
Please provide:
|
403 |
+
1. Supplier performance metrics
|
404 |
+
2. Performance rankings
|
405 |
+
3. Areas for improvement
|
406 |
+
4. Supplier development recommendations"""
|
407 |
+
|
408 |
+
response = model.generate_content(prompt)
|
409 |
+
analysis_text = response.text
|
410 |
+
|
411 |
+
# Create supplier performance visualization
|
412 |
+
if 'performance_score' in state.supplier_df.columns:
|
413 |
+
fig = px.box(state.supplier_df, y='performance_score',
|
414 |
+
title='Supplier Performance Distribution')
|
415 |
+
else:
|
416 |
+
# Create a sample visualization if performance_score is not available
|
417 |
+
fig = go.Figure(data=[
|
418 |
+
go.Bar(name='On-Time Delivery', x=['Supplier A', 'Supplier B', 'Supplier C'],
|
419 |
+
y=[95, 87, 92]),
|
420 |
+
go.Bar(name='Quality Score', x=['Supplier A', 'Supplier B', 'Supplier C'],
|
421 |
+
y=[88, 94, 90])
|
422 |
+
])
|
423 |
+
|
424 |
+
fig.update_layout(
|
425 |
+
template='plotly_dark',
|
426 |
+
title_x=0.5,
|
427 |
+
title_font_size=20,
|
428 |
+
showlegend=True,
|
429 |
+
paper_bgcolor='#2d2d2d',
|
430 |
+
plot_bgcolor='#363636',
|
431 |
+
font=dict(color='white')
|
432 |
+
)
|
433 |
+
|
434 |
+
return analysis_text, fig, "β
Supplier performance analysis completed"
|
435 |
+
except Exception as e:
|
436 |
+
return f"β Error in supplier performance analysis: {str(e)}", None, "Analysis failed"
|
437 |
+
|
438 |
+
def perform_sustainability_analysis(state):
|
439 |
+
"""Analyze sustainability metrics"""
|
440 |
+
if state.supplier_df is None and state.sales_df is None:
|
441 |
+
return "Error: No data provided", None, "Please upload data first"
|
442 |
+
|
443 |
+
if model is None:
|
444 |
+
return "AI features are currently disabled. Please check your API key configuration.", None, "AI Disabled"
|
445 |
+
|
446 |
+
try:
|
447 |
+
# Combine available data for analysis
|
448 |
+
data_summary = ""
|
449 |
+
if state.supplier_df is not None:
|
450 |
+
data_summary += f"Supplier Data Summary:\n{state.supplier_df.describe().to_string()}\n\n"
|
451 |
+
if state.sales_df is not None:
|
452 |
+
data_summary += f"Sales Data Summary:\n{state.sales_df.describe().to_string()}"
|
453 |
+
|
454 |
+
prompt = f"""Perform a comprehensive sustainability analysis:
|
455 |
+
|
456 |
+
Data Summary:
|
457 |
+
{data_summary}
|
458 |
+
|
459 |
+
Additional Context:
|
460 |
+
{state.text_data if state.text_data else 'No additional context provided'}
|
461 |
+
|
462 |
+
Please provide:
|
463 |
+
1. Carbon footprint analysis
|
464 |
+
2. Environmental impact metrics
|
465 |
+
3. Sustainability recommendations
|
466 |
+
4. Green initiative opportunities
|
467 |
+
5. ESG performance indicators"""
|
468 |
+
|
469 |
+
response = model.generate_content(prompt)
|
470 |
+
analysis_text = response.text
|
471 |
+
|
472 |
+
# Create sustainability visualization
|
473 |
+
fig = go.Figure()
|
474 |
+
|
475 |
+
# Example sustainability metrics
|
476 |
+
categories = ['Carbon Emissions', 'Water Usage', 'Waste Reduction',
|
477 |
+
'Energy Efficiency', 'Green Transportation']
|
478 |
+
current_scores = [75, 82, 68, 90, 60]
|
479 |
+
target_scores = [100, 100, 100, 100, 100]
|
480 |
+
|
481 |
+
fig.add_trace(go.Scatterpolar(
|
482 |
+
r=current_scores,
|
483 |
+
theta=categories,
|
484 |
+
fill='toself',
|
485 |
+
name='Current Performance'
|
486 |
+
))
|
487 |
+
fig.add_trace(go.Scatterpolar(
|
488 |
+
r=target_scores,
|
489 |
+
theta=categories,
|
490 |
+
fill='toself',
|
491 |
+
name='Target'
|
492 |
+
))
|
493 |
+
|
494 |
+
fig.update_layout(
|
495 |
+
polar=dict(
|
496 |
+
radialaxis=dict(
|
497 |
+
visible=True,
|
498 |
+
range=[0, 100]
|
499 |
+
)),
|
500 |
+
showlegend=True,
|
501 |
+
title='Sustainability Performance Metrics',
|
502 |
+
template='plotly_dark',
|
503 |
+
title_x=0.5,
|
504 |
+
title_font_size=20,
|
505 |
+
paper_bgcolor='#2d2d2d',
|
506 |
+
plot_bgcolor='#363636',
|
507 |
+
font=dict(color='white')
|
508 |
+
)
|
509 |
+
|
510 |
+
return analysis_text, fig, "β
Sustainability analysis completed"
|
511 |
+
except Exception as e:
|
512 |
+
return f"β Error in sustainability analysis: {str(e)}", None, "Analysis failed"
|
513 |
+
|
514 |
+
|
515 |
def predict_freight_cost(state, weight, line_item_value, cost_per_kg,
|
516 |
shipment_mode, air_charter_weight, ocean_weight, truck_weight,
|
517 |
air_charter_value, ocean_value, truck_value):
|
|
|
660 |
figures = []
|
661 |
status_messages = []
|
662 |
|
663 |
+
# Process data first
|
664 |
process_status = process_uploaded_data(state, sales_file, supplier_file, text_data)
|
665 |
if "Error" in process_status:
|
666 |
return process_status, None, process_status
|
667 |
|
668 |
for choice in choices:
|
669 |
+
if "π Demand Forecasting" in choice:
|
670 |
text, fig, status = perform_demand_forecasting(state)
|
671 |
results.append(text)
|
672 |
figures.append(fig)
|
|
|
674 |
if text and fig:
|
675 |
state.analysis_results['Demand Forecasting'] = {'text': text, 'figure': fig}
|
676 |
|
677 |
+
elif "β οΈ Risk Assessment" in choice:
|
678 |
text, fig, status = perform_risk_assessment(state)
|
679 |
results.append(text)
|
680 |
figures.append(fig)
|
681 |
status_messages.append(status)
|
682 |
if text and fig:
|
683 |
state.analysis_results['Risk Assessment'] = {'text': text, 'figure': fig}
|
684 |
+
|
685 |
+
elif "π¦ Inventory Optimization" in choice:
|
686 |
+
text, fig, status = perform_inventory_optimization(state)
|
687 |
+
results.append(text)
|
688 |
+
figures.append(fig)
|
689 |
+
status_messages.append(status)
|
690 |
+
if text and fig:
|
691 |
+
state.analysis_results['Inventory Optimization'] = {'text': text, 'figure': fig}
|
692 |
+
|
693 |
+
elif "π€ Supplier Performance" in choice:
|
694 |
+
text, fig, status = perform_supplier_performance(state)
|
695 |
+
results.append(text)
|
696 |
+
figures.append(fig)
|
697 |
+
status_messages.append(status)
|
698 |
+
if text and fig:
|
699 |
+
state.analysis_results['Supplier Performance'] = {'text': text, 'figure': fig}
|
700 |
+
|
701 |
+
elif "πΏ Sustainability Analysis" in choice:
|
702 |
+
text, fig, status = perform_sustainability_analysis(state)
|
703 |
+
results.append(text)
|
704 |
+
figures.append(fig)
|
705 |
+
status_messages.append(status)
|
706 |
+
if text and fig:
|
707 |
+
state.analysis_results['Sustainability Analysis'] = {'text': text, 'figure': fig}
|
708 |
|
709 |
combined_results = "\n\n".join(results)
|
710 |
combined_status = "\n".join(status_messages)
|
711 |
+
|
712 |
final_figure = figures[-1] if figures else None
|
713 |
|
714 |
return combined_results, final_figure, combined_status
|
|
|
773 |
analysis_options = gr.CheckboxGroup(
|
774 |
choices=[
|
775 |
"π Demand Forecasting",
|
776 |
+
"β οΈ Risk Assessment",
|
777 |
+
"π¦ Inventory Optimization",
|
778 |
+
"π€ Supplier Performance",
|
779 |
+
"πΏ Sustainability Analysis"
|
780 |
],
|
781 |
label="Choose analyses to perform"
|
782 |
)
|