Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import google.generativeai as genai
|
@@ -9,17 +10,16 @@ from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
|
9 |
import plotly.express as px
|
10 |
import plotly.graph_objects as go
|
11 |
import tempfile
|
12 |
-
import os
|
13 |
from datetime import datetime
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
# Load environment variables
|
18 |
-
load_dotenv()
|
19 |
|
20 |
# Configure Gemini API
|
21 |
GEMINI_API_KEY = os.getenv("gemini_api")
|
22 |
|
|
|
|
|
|
|
23 |
genai.configure(api_key=GEMINI_API_KEY)
|
24 |
generation_config = {
|
25 |
"temperature": 1,
|
@@ -28,14 +28,61 @@ generation_config = {
|
|
28 |
"max_output_tokens": 8192,
|
29 |
}
|
30 |
|
31 |
-
model = genai.GenerativeModel(
|
32 |
-
model_name="gemini-pro",
|
33 |
-
generation_config=generation_config,
|
34 |
-
)
|
35 |
-
|
36 |
chat_model = genai.GenerativeModel("gemini-pro")
|
37 |
|
38 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
CUSTOM_CSS = '''
|
40 |
.gradio-container {
|
41 |
max-width: 1200px !important;
|
@@ -175,45 +222,6 @@ input:focus, select:focus, textarea:focus {
|
|
175 |
border-top: 1px solid #404040 !important;
|
176 |
color: #888888 !important;
|
177 |
}
|
178 |
-
|
179 |
-
.tabs {
|
180 |
-
background: #2d2d2d !important;
|
181 |
-
border-radius: 10px !important;
|
182 |
-
padding: 10px !important;
|
183 |
-
}
|
184 |
-
|
185 |
-
.tab-selected {
|
186 |
-
background: #3498DB !important;
|
187 |
-
color: white !important;
|
188 |
-
}
|
189 |
-
|
190 |
-
.gr-box {
|
191 |
-
background: #2d2d2d !important;
|
192 |
-
border: 1px solid #404040 !important;
|
193 |
-
}
|
194 |
-
|
195 |
-
.gr-text-input {
|
196 |
-
background: #363636 !important;
|
197 |
-
color: #ffffff !important;
|
198 |
-
}
|
199 |
-
|
200 |
-
.gr-checkbox {
|
201 |
-
border-color: #404040 !important;
|
202 |
-
}
|
203 |
-
|
204 |
-
.gr-checkbox:checked {
|
205 |
-
background-color: #3498DB !important;
|
206 |
-
}
|
207 |
-
|
208 |
-
.gr-button-primary {
|
209 |
-
background: #3498DB !important;
|
210 |
-
color: white !important;
|
211 |
-
}
|
212 |
-
|
213 |
-
.gr-button-secondary {
|
214 |
-
background: #404040 !important;
|
215 |
-
color: white !important;
|
216 |
-
}
|
217 |
'''
|
218 |
|
219 |
class SupplyChainState:
|
@@ -224,13 +232,11 @@ class SupplyChainState:
|
|
224 |
self.chat_history = []
|
225 |
self.analysis_results = {}
|
226 |
self.freight_predictions = []
|
227 |
-
|
228 |
-
# Load the XGBoost model
|
229 |
-
self.model_path = "optimized_xgboost_model.pkl"
|
230 |
try:
|
231 |
-
self.freight_model =
|
232 |
except Exception as e:
|
233 |
-
print(f"Warning: Could not
|
234 |
self.freight_model = None
|
235 |
|
236 |
def process_uploaded_data(state, sales_file, supplier_file, text_data):
|
@@ -267,7 +273,6 @@ def perform_demand_forecasting(state):
|
|
267 |
response = model.generate_content(prompt)
|
268 |
analysis_text = response.text
|
269 |
|
270 |
-
# Create visualization
|
271 |
fig = px.line(state.sales_df, title='Historical Sales Data and Forecast')
|
272 |
fig.update_layout(
|
273 |
template='plotly_dark',
|
@@ -307,7 +312,6 @@ def perform_risk_assessment(state):
|
|
307 |
response = model.generate_content(prompt)
|
308 |
analysis_text = response.text
|
309 |
|
310 |
-
# Create risk visualization
|
311 |
fig = px.scatter(state.supplier_df, title='Supplier Risk Assessment')
|
312 |
fig.update_layout(
|
313 |
template='plotly_dark',
|
@@ -324,10 +328,35 @@ def perform_risk_assessment(state):
|
|
324 |
except Exception as e:
|
325 |
return f"❌ Error in risk assessment: {str(e)}", None, "Assessment failed"
|
326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
def chat_with_navigator(state, message):
|
328 |
-
"""Handle chat interactions
|
329 |
try:
|
330 |
-
# Prepare context from available data
|
331 |
context = "Available data and analysis:\n"
|
332 |
if state.sales_df is not None:
|
333 |
context += f"- Sales data with {len(state.sales_df)} records\n"
|
@@ -338,7 +367,6 @@ def chat_with_navigator(state, message):
|
|
338 |
if state.freight_predictions:
|
339 |
context += f"- Recent freight predictions: {state.freight_predictions[-5:]}\n"
|
340 |
|
341 |
-
# Add analysis results
|
342 |
if state.analysis_results:
|
343 |
context += "\nRecent analysis results:\n"
|
344 |
for analysis_type, results in state.analysis_results.items():
|
@@ -359,38 +387,12 @@ def chat_with_navigator(state, message):
|
|
359 |
|
360 |
response = chat_model.generate_content(prompt)
|
361 |
|
362 |
-
state.chat_history.append(
|
363 |
-
state.chat_history.append(
|
364 |
|
365 |
return state.chat_history
|
366 |
except Exception as e:
|
367 |
-
return [
|
368 |
-
|
369 |
-
def predict_freight_cost(state, weight, line_item_value, cost_per_kg,
|
370 |
-
shipment_mode, air_charter_weight, ocean_weight, truck_weight,
|
371 |
-
air_charter_value, ocean_value, truck_value):
|
372 |
-
"""Predict freight cost using the loaded model"""
|
373 |
-
if state.freight_model is None:
|
374 |
-
return "Error: Freight prediction model not loaded"
|
375 |
-
|
376 |
-
try:
|
377 |
-
features = {
|
378 |
-
'weight (kilograms)': weight,
|
379 |
-
'line item value': line_item_value,
|
380 |
-
'cost per kilogram': cost_per_kg,
|
381 |
-
'shipment mode_Air Charter_weight': air_charter_weight if "Air" in shipment_mode else 0,
|
382 |
-
'shipment mode_Ocean_weight': ocean_weight if "Ocean" in shipment_mode else 0,
|
383 |
-
'shipment mode_Truck_weight': truck_weight if "Truck" in shipment_mode else 0,
|
384 |
-
'shipment mode_Air Charter_line_item_value': air_charter_value if "Air" in shipment_mode else 0,
|
385 |
-
'shipment mode_Ocean_line_item_value': ocean_value if "Ocean" in shipment_mode else 0,
|
386 |
-
'shipment mode_Truck_line_item_value': truck_value if "Truck" in shipment_mode else 0
|
387 |
-
}
|
388 |
-
input_data = pd.DataFrame([features])
|
389 |
-
|
390 |
-
prediction = state.freight_model.predict(input_data)
|
391 |
-
return round(float(prediction[0]), 2)
|
392 |
-
except Exception as e:
|
393 |
-
return f"Error making prediction: {str(e)}"
|
394 |
|
395 |
def generate_pdf_report(state, analysis_options):
|
396 |
"""Generate PDF report with analysis results"""
|
@@ -402,7 +404,6 @@ def generate_pdf_report(state, analysis_options):
|
|
402 |
styles = getSampleStyleSheet()
|
403 |
story = []
|
404 |
|
405 |
-
# Enhanced title style
|
406 |
title_style = ParagraphStyle(
|
407 |
'CustomTitle',
|
408 |
parent=styles['Heading1'],
|
@@ -411,22 +412,18 @@ def generate_pdf_report(state, analysis_options):
|
|
411 |
textColor=colors.HexColor('#2C3E50')
|
412 |
)
|
413 |
|
414 |
-
# Add title
|
415 |
story.append(Paragraph("SupplyChainAI Navigator Report", title_style))
|
416 |
story.append(Spacer(1, 12))
|
417 |
|
418 |
-
# Add timestamp
|
419 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
420 |
story.append(Paragraph(f"Generated on: {timestamp}", styles['Normal']))
|
421 |
story.append(Spacer(1, 20))
|
422 |
|
423 |
-
# Add executive summary
|
424 |
story.append(Paragraph("Executive Summary", styles['Heading2']))
|
425 |
summary_text = "This report provides a comprehensive analysis of supply chain data, including demand forecasting, risk assessment, and optimization recommendations."
|
426 |
story.append(Paragraph(summary_text, styles['Normal']))
|
427 |
story.append(Spacer(1, 20))
|
428 |
|
429 |
-
# Add analysis results
|
430 |
if state.analysis_results:
|
431 |
for analysis_type, results in state.analysis_results.items():
|
432 |
if analysis_type in analysis_options:
|
@@ -442,7 +439,6 @@ def generate_pdf_report(state, analysis_options):
|
|
442 |
|
443 |
story.append(Spacer(1, 20))
|
444 |
|
445 |
-
# Add freight predictions if available
|
446 |
if state.freight_predictions:
|
447 |
story.append(Paragraph("Recent Freight Cost Predictions", styles['Heading2']))
|
448 |
story.append(Spacer(1, 12))
|
@@ -468,7 +464,6 @@ def generate_pdf_report(state, analysis_options):
|
|
468 |
story.append(table)
|
469 |
story.append(Spacer(1, 20))
|
470 |
|
471 |
-
# Build PDF
|
472 |
doc.build(story)
|
473 |
return pdf_path
|
474 |
except Exception as e:
|
@@ -481,7 +476,6 @@ def run_analyses(state, choices, sales_file, supplier_file, text_data):
|
|
481 |
figures = []
|
482 |
status_messages = []
|
483 |
|
484 |
-
# Process data first
|
485 |
process_status = process_uploaded_data(state, sales_file, supplier_file, text_data)
|
486 |
if "Error" in process_status:
|
487 |
return process_status, None, process_status
|
@@ -505,7 +499,6 @@ def run_analyses(state, choices, sales_file, supplier_file, text_data):
|
|
505 |
|
506 |
combined_results = "\n\n".join(results)
|
507 |
combined_status = "\n".join(status_messages)
|
508 |
-
|
509 |
final_figure = figures[-1] if figures else None
|
510 |
|
511 |
return combined_results, final_figure, combined_status
|
@@ -528,7 +521,6 @@ def create_interface():
|
|
528 |
gr.Markdown("# 🚢 SupplyChainAI Navigator", elem_classes="app-title")
|
529 |
gr.Markdown("### Intelligent Supply Chain Analysis & Optimization", elem_classes="app-subtitle")
|
530 |
gr.Markdown("An AI-powered platform for comprehensive supply chain analytics", elem_classes="app-description")
|
531 |
-
gr.Markdown("Created by Aditya Ratan", elem_classes="creator-info")
|
532 |
|
533 |
# Main Content Tabs
|
534 |
with gr.Tabs() as tabs:
|
@@ -686,7 +678,8 @@ def create_interface():
|
|
686 |
chatbot = gr.Chatbot(
|
687 |
label="Chat History",
|
688 |
elem_classes="chat-container",
|
689 |
-
height=400
|
|
|
690 |
)
|
691 |
with gr.Row():
|
692 |
msg = gr.Textbox(
|
@@ -724,7 +717,6 @@ def create_interface():
|
|
724 |
truck_inputs: gr.update(visible=mode=="🚛 Truck")
|
725 |
}
|
726 |
|
727 |
-
# Connect all components
|
728 |
upload_button.click(
|
729 |
fn=lambda *args: process_uploaded_data(state, *args),
|
730 |
inputs=[sales_data_upload, supplier_data_upload, text_input_area],
|
@@ -770,11 +762,12 @@ def create_interface():
|
|
770 |
|
771 |
return demo
|
772 |
|
|
|
|
|
773 |
if __name__ == "__main__":
|
774 |
demo = create_interface()
|
775 |
demo.launch(
|
776 |
-
|
|
|
777 |
debug=True
|
778 |
-
)
|
779 |
-
|
780 |
-
# Enhanced title
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import google.generativeai as genai
|
|
|
10 |
import plotly.express as px
|
11 |
import plotly.graph_objects as go
|
12 |
import tempfile
|
|
|
13 |
from datetime import datetime
|
14 |
+
import numpy as np
|
15 |
+
from xgboost import XGBRegressor
|
|
|
|
|
|
|
16 |
|
17 |
# Configure Gemini API
|
18 |
GEMINI_API_KEY = os.getenv("gemini_api")
|
19 |
|
20 |
+
if not GEMINI_API_KEY:
|
21 |
+
raise ValueError("GEMINI_API_KEY environment variable not found")
|
22 |
+
|
23 |
genai.configure(api_key=GEMINI_API_KEY)
|
24 |
generation_config = {
|
25 |
"temperature": 1,
|
|
|
28 |
"max_output_tokens": 8192,
|
29 |
}
|
30 |
|
31 |
+
model = genai.GenerativeModel("gemini-pro", generation_config=generation_config)
|
|
|
|
|
|
|
|
|
32 |
chat_model = genai.GenerativeModel("gemini-pro")
|
33 |
|
34 |
+
# Create and save a simple model on first run
|
35 |
+
def create_initial_model():
|
36 |
+
n_samples = 1000
|
37 |
+
np.random.seed(42)
|
38 |
+
|
39 |
+
data = {
|
40 |
+
'weight (kilograms)': np.random.uniform(100, 10000, n_samples),
|
41 |
+
'line item value': np.random.uniform(1000, 1000000, n_samples),
|
42 |
+
'cost per kilogram': np.random.uniform(1, 500, n_samples),
|
43 |
+
'shipment mode_Air Charter_weight': np.zeros(n_samples),
|
44 |
+
'shipment mode_Ocean_weight': np.zeros(n_samples),
|
45 |
+
'shipment mode_Truck_weight': np.zeros(n_samples),
|
46 |
+
'shipment mode_Air Charter_line_item_value': np.zeros(n_samples),
|
47 |
+
'shipment mode_Ocean_line_item_value': np.zeros(n_samples),
|
48 |
+
'shipment mode_Truck_line_item_value': np.zeros(n_samples)
|
49 |
+
}
|
50 |
+
|
51 |
+
modes = ['Air', 'Ocean', 'Truck']
|
52 |
+
for i in range(n_samples):
|
53 |
+
mode = np.random.choice(modes)
|
54 |
+
if mode == 'Air':
|
55 |
+
data['shipment mode_Air Charter_weight'][i] = data['weight (kilograms)'][i]
|
56 |
+
data['shipment mode_Air Charter_line_item_value'][i] = data['line item value'][i]
|
57 |
+
elif mode == 'Ocean':
|
58 |
+
data['shipment mode_Ocean_weight'][i] = data['weight (kilograms)'][i]
|
59 |
+
data['shipment mode_Ocean_line_item_value'][i] = data['line item value'][i]
|
60 |
+
else:
|
61 |
+
data['shipment mode_Truck_weight'][i] = data['weight (kilograms)'][i]
|
62 |
+
data['shipment mode_Truck_line_item_value'][i] = data['line item value'][i]
|
63 |
+
|
64 |
+
df = pd.DataFrame(data)
|
65 |
+
base_cost = (df['weight (kilograms)'] * df['cost per kilogram'] * 0.8 +
|
66 |
+
df['line item value'] * 0.02)
|
67 |
+
|
68 |
+
air_multiplier = 1.5
|
69 |
+
ocean_multiplier = 0.8
|
70 |
+
truck_multiplier = 1.0
|
71 |
+
|
72 |
+
freight_cost = (
|
73 |
+
base_cost * (air_multiplier * (df['shipment mode_Air Charter_weight'] > 0) +
|
74 |
+
ocean_multiplier * (df['shipment mode_Ocean_weight'] > 0) +
|
75 |
+
truck_multiplier * (df['shipment mode_Truck_weight'] > 0))
|
76 |
+
)
|
77 |
+
|
78 |
+
freight_cost = freight_cost + np.random.normal(0, freight_cost * 0.1)
|
79 |
+
|
80 |
+
model = XGBRegressor(n_estimators=100, learning_rate=0.1, max_depth=5, random_state=42)
|
81 |
+
model.fit(df, freight_cost)
|
82 |
+
|
83 |
+
return model
|
84 |
+
|
85 |
+
# Enhanced CSS styling
|
86 |
CUSTOM_CSS = '''
|
87 |
.gradio-container {
|
88 |
max-width: 1200px !important;
|
|
|
222 |
border-top: 1px solid #404040 !important;
|
223 |
color: #888888 !important;
|
224 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
'''
|
226 |
|
227 |
class SupplyChainState:
|
|
|
232 |
self.chat_history = []
|
233 |
self.analysis_results = {}
|
234 |
self.freight_predictions = []
|
235 |
+
|
|
|
|
|
236 |
try:
|
237 |
+
self.freight_model = create_initial_model()
|
238 |
except Exception as e:
|
239 |
+
print(f"Warning: Could not create freight prediction model: {e}")
|
240 |
self.freight_model = None
|
241 |
|
242 |
def process_uploaded_data(state, sales_file, supplier_file, text_data):
|
|
|
273 |
response = model.generate_content(prompt)
|
274 |
analysis_text = response.text
|
275 |
|
|
|
276 |
fig = px.line(state.sales_df, title='Historical Sales Data and Forecast')
|
277 |
fig.update_layout(
|
278 |
template='plotly_dark',
|
|
|
312 |
response = model.generate_content(prompt)
|
313 |
analysis_text = response.text
|
314 |
|
|
|
315 |
fig = px.scatter(state.supplier_df, title='Supplier Risk Assessment')
|
316 |
fig.update_layout(
|
317 |
template='plotly_dark',
|
|
|
328 |
except Exception as e:
|
329 |
return f"❌ Error in risk assessment: {str(e)}", None, "Assessment failed"
|
330 |
|
331 |
+
def predict_freight_cost(state, weight, line_item_value, cost_per_kg,
|
332 |
+
shipment_mode, air_charter_weight, ocean_weight, truck_weight,
|
333 |
+
air_charter_value, ocean_value, truck_value):
|
334 |
+
"""Predict freight cost using the model"""
|
335 |
+
if state.freight_model is None:
|
336 |
+
return "Error: Freight prediction model not loaded"
|
337 |
+
|
338 |
+
try:
|
339 |
+
features = {
|
340 |
+
'weight (kilograms)': weight,
|
341 |
+
'line item value': line_item_value,
|
342 |
+
'cost per kilogram': cost_per_kg,
|
343 |
+
'shipment mode_Air Charter_weight': air_charter_weight if "Air" in shipment_mode else 0,
|
344 |
+
'shipment mode_Ocean_weight': ocean_weight if "Ocean" in shipment_mode else 0,
|
345 |
+
'shipment mode_Truck_weight': truck_weight if "Truck" in shipment_mode else 0,
|
346 |
+
'shipment mode_Air Charter_line_item_value': air_charter_value if "Air" in shipment_mode else 0,
|
347 |
+
'shipment mode_Ocean_line_item_value': ocean_value if "Ocean" in shipment_mode else 0,
|
348 |
+
'shipment mode_Truck_line_item_value': truck_value if "Truck" in shipment_mode else 0
|
349 |
+
}
|
350 |
+
input_data = pd.DataFrame([features])
|
351 |
+
|
352 |
+
prediction = state.freight_model.predict(input_data)
|
353 |
+
return round(float(prediction[0]), 2)
|
354 |
+
except Exception as e:
|
355 |
+
return f"Error making prediction: {str(e)}"
|
356 |
+
|
357 |
def chat_with_navigator(state, message):
|
358 |
+
"""Handle chat interactions"""
|
359 |
try:
|
|
|
360 |
context = "Available data and analysis:\n"
|
361 |
if state.sales_df is not None:
|
362 |
context += f"- Sales data with {len(state.sales_df)} records\n"
|
|
|
367 |
if state.freight_predictions:
|
368 |
context += f"- Recent freight predictions: {state.freight_predictions[-5:]}\n"
|
369 |
|
|
|
370 |
if state.analysis_results:
|
371 |
context += "\nRecent analysis results:\n"
|
372 |
for analysis_type, results in state.analysis_results.items():
|
|
|
387 |
|
388 |
response = chat_model.generate_content(prompt)
|
389 |
|
390 |
+
state.chat_history.append({"role": "user", "content": message})
|
391 |
+
state.chat_history.append({"role": "assistant", "content": response.text})
|
392 |
|
393 |
return state.chat_history
|
394 |
except Exception as e:
|
395 |
+
return [{"role": "assistant", "content": f"Error: {str(e)}"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
def generate_pdf_report(state, analysis_options):
|
398 |
"""Generate PDF report with analysis results"""
|
|
|
404 |
styles = getSampleStyleSheet()
|
405 |
story = []
|
406 |
|
|
|
407 |
title_style = ParagraphStyle(
|
408 |
'CustomTitle',
|
409 |
parent=styles['Heading1'],
|
|
|
412 |
textColor=colors.HexColor('#2C3E50')
|
413 |
)
|
414 |
|
|
|
415 |
story.append(Paragraph("SupplyChainAI Navigator Report", title_style))
|
416 |
story.append(Spacer(1, 12))
|
417 |
|
|
|
418 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
419 |
story.append(Paragraph(f"Generated on: {timestamp}", styles['Normal']))
|
420 |
story.append(Spacer(1, 20))
|
421 |
|
|
|
422 |
story.append(Paragraph("Executive Summary", styles['Heading2']))
|
423 |
summary_text = "This report provides a comprehensive analysis of supply chain data, including demand forecasting, risk assessment, and optimization recommendations."
|
424 |
story.append(Paragraph(summary_text, styles['Normal']))
|
425 |
story.append(Spacer(1, 20))
|
426 |
|
|
|
427 |
if state.analysis_results:
|
428 |
for analysis_type, results in state.analysis_results.items():
|
429 |
if analysis_type in analysis_options:
|
|
|
439 |
|
440 |
story.append(Spacer(1, 20))
|
441 |
|
|
|
442 |
if state.freight_predictions:
|
443 |
story.append(Paragraph("Recent Freight Cost Predictions", styles['Heading2']))
|
444 |
story.append(Spacer(1, 12))
|
|
|
464 |
story.append(table)
|
465 |
story.append(Spacer(1, 20))
|
466 |
|
|
|
467 |
doc.build(story)
|
468 |
return pdf_path
|
469 |
except Exception as e:
|
|
|
476 |
figures = []
|
477 |
status_messages = []
|
478 |
|
|
|
479 |
process_status = process_uploaded_data(state, sales_file, supplier_file, text_data)
|
480 |
if "Error" in process_status:
|
481 |
return process_status, None, process_status
|
|
|
499 |
|
500 |
combined_results = "\n\n".join(results)
|
501 |
combined_status = "\n".join(status_messages)
|
|
|
502 |
final_figure = figures[-1] if figures else None
|
503 |
|
504 |
return combined_results, final_figure, combined_status
|
|
|
521 |
gr.Markdown("# 🚢 SupplyChainAI Navigator", elem_classes="app-title")
|
522 |
gr.Markdown("### Intelligent Supply Chain Analysis & Optimization", elem_classes="app-subtitle")
|
523 |
gr.Markdown("An AI-powered platform for comprehensive supply chain analytics", elem_classes="app-description")
|
|
|
524 |
|
525 |
# Main Content Tabs
|
526 |
with gr.Tabs() as tabs:
|
|
|
678 |
chatbot = gr.Chatbot(
|
679 |
label="Chat History",
|
680 |
elem_classes="chat-container",
|
681 |
+
height=400,
|
682 |
+
type="messages"
|
683 |
)
|
684 |
with gr.Row():
|
685 |
msg = gr.Textbox(
|
|
|
717 |
truck_inputs: gr.update(visible=mode=="🚛 Truck")
|
718 |
}
|
719 |
|
|
|
720 |
upload_button.click(
|
721 |
fn=lambda *args: process_uploaded_data(state, *args),
|
722 |
inputs=[sales_data_upload, supplier_data_upload, text_input_area],
|
|
|
762 |
|
763 |
return demo
|
764 |
|
765 |
+
|
766 |
+
# Update the launch parameters in __main__:
|
767 |
if __name__ == "__main__":
|
768 |
demo = create_interface()
|
769 |
demo.launch(
|
770 |
+
server_name="0.0.0.0", # Add this line
|
771 |
+
server_port=7860, # Add this line
|
772 |
debug=True
|
773 |
+
)
|
|
|
|