Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 23,283 Bytes
			
			| 548cd19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 | # pylint: skip-file
# type: ignore
import math
import random
import torch
from torch import nn
from torch.nn import functional as F
from .fused_act import FusedLeakyReLU, fused_leaky_relu
class NormStyleCode(nn.Module):
    def forward(self, x):
        """Normalize the style codes.
        Args:
            x (Tensor): Style codes with shape (b, c).
        Returns:
            Tensor: Normalized tensor.
        """
        return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
class EqualLinear(nn.Module):
    """Equalized Linear as StyleGAN2.
    Args:
        in_channels (int): Size of each sample.
        out_channels (int): Size of each output sample.
        bias (bool): If set to ``False``, the layer will not learn an additive
            bias. Default: ``True``.
        bias_init_val (float): Bias initialized value. Default: 0.
        lr_mul (float): Learning rate multiplier. Default: 1.
        activation (None | str): The activation after ``linear`` operation.
            Supported: 'fused_lrelu', None. Default: None.
    """
    def __init__(
        self,
        in_channels,
        out_channels,
        bias=True,
        bias_init_val=0,
        lr_mul=1,
        activation=None,
    ):
        super(EqualLinear, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.lr_mul = lr_mul
        self.activation = activation
        if self.activation not in ["fused_lrelu", None]:
            raise ValueError(
                f"Wrong activation value in EqualLinear: {activation}"
                "Supported ones are: ['fused_lrelu', None]."
            )
        self.scale = (1 / math.sqrt(in_channels)) * lr_mul
        self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
        if bias:
            self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
        else:
            self.register_parameter("bias", None)
    def forward(self, x):
        if self.bias is None:
            bias = None
        else:
            bias = self.bias * self.lr_mul
        if self.activation == "fused_lrelu":
            out = F.linear(x, self.weight * self.scale)
            out = fused_leaky_relu(out, bias)
        else:
            out = F.linear(x, self.weight * self.scale, bias=bias)
        return out
    def __repr__(self):
        return (
            f"{self.__class__.__name__}(in_channels={self.in_channels}, "
            f"out_channels={self.out_channels}, bias={self.bias is not None})"
        )
class ModulatedConv2d(nn.Module):
    """Modulated Conv2d used in StyleGAN2.
    There is no bias in ModulatedConv2d.
    Args:
        in_channels (int): Channel number of the input.
        out_channels (int): Channel number of the output.
        kernel_size (int): Size of the convolving kernel.
        num_style_feat (int): Channel number of style features.
        demodulate (bool): Whether to demodulate in the conv layer.
            Default: True.
        sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
            Default: None.
        eps (float): A value added to the denominator for numerical stability.
            Default: 1e-8.
    """
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        num_style_feat,
        demodulate=True,
        sample_mode=None,
        eps=1e-8,
        interpolation_mode="bilinear",
    ):
        super(ModulatedConv2d, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.demodulate = demodulate
        self.sample_mode = sample_mode
        self.eps = eps
        self.interpolation_mode = interpolation_mode
        if self.interpolation_mode == "nearest":
            self.align_corners = None
        else:
            self.align_corners = False
        self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
        # modulation inside each modulated conv
        self.modulation = EqualLinear(
            num_style_feat,
            in_channels,
            bias=True,
            bias_init_val=1,
            lr_mul=1,
            activation=None,
        )
        self.weight = nn.Parameter(
            torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)
        )
        self.padding = kernel_size // 2
    def forward(self, x, style):
        """Forward function.
        Args:
            x (Tensor): Tensor with shape (b, c, h, w).
            style (Tensor): Tensor with shape (b, num_style_feat).
        Returns:
            Tensor: Modulated tensor after convolution.
        """
        b, c, h, w = x.shape  # c = c_in
        # weight modulation
        style = self.modulation(style).view(b, 1, c, 1, 1)
        # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
        weight = self.scale * self.weight * style  # (b, c_out, c_in, k, k)
        if self.demodulate:
            demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
            weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
        weight = weight.view(
            b * self.out_channels, c, self.kernel_size, self.kernel_size
        )
        if self.sample_mode == "upsample":
            x = F.interpolate(
                x,
                scale_factor=2,
                mode=self.interpolation_mode,
                align_corners=self.align_corners,
            )
        elif self.sample_mode == "downsample":
            x = F.interpolate(
                x,
                scale_factor=0.5,
                mode=self.interpolation_mode,
                align_corners=self.align_corners,
            )
        b, c, h, w = x.shape
        x = x.view(1, b * c, h, w)
        # weight: (b*c_out, c_in, k, k), groups=b
        out = F.conv2d(x, weight, padding=self.padding, groups=b)
        out = out.view(b, self.out_channels, *out.shape[2:4])
        return out
    def __repr__(self):
        return (
            f"{self.__class__.__name__}(in_channels={self.in_channels}, "
            f"out_channels={self.out_channels}, "
            f"kernel_size={self.kernel_size}, "
            f"demodulate={self.demodulate}, sample_mode={self.sample_mode})"
        )
class StyleConv(nn.Module):
    """Style conv.
    Args:
        in_channels (int): Channel number of the input.
        out_channels (int): Channel number of the output.
        kernel_size (int): Size of the convolving kernel.
        num_style_feat (int): Channel number of style features.
        demodulate (bool): Whether demodulate in the conv layer. Default: True.
        sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
            Default: None.
    """
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        num_style_feat,
        demodulate=True,
        sample_mode=None,
        interpolation_mode="bilinear",
    ):
        super(StyleConv, self).__init__()
        self.modulated_conv = ModulatedConv2d(
            in_channels,
            out_channels,
            kernel_size,
            num_style_feat,
            demodulate=demodulate,
            sample_mode=sample_mode,
            interpolation_mode=interpolation_mode,
        )
        self.weight = nn.Parameter(torch.zeros(1))  # for noise injection
        self.activate = FusedLeakyReLU(out_channels)
    def forward(self, x, style, noise=None):
        # modulate
        out = self.modulated_conv(x, style)
        # noise injection
        if noise is None:
            b, _, h, w = out.shape
            noise = out.new_empty(b, 1, h, w).normal_()
        out = out + self.weight * noise
        # activation (with bias)
        out = self.activate(out)
        return out
class ToRGB(nn.Module):
    """To RGB from features.
    Args:
        in_channels (int): Channel number of input.
        num_style_feat (int): Channel number of style features.
        upsample (bool): Whether to upsample. Default: True.
    """
    def __init__(
        self, in_channels, num_style_feat, upsample=True, interpolation_mode="bilinear"
    ):
        super(ToRGB, self).__init__()
        self.upsample = upsample
        self.interpolation_mode = interpolation_mode
        if self.interpolation_mode == "nearest":
            self.align_corners = None
        else:
            self.align_corners = False
        self.modulated_conv = ModulatedConv2d(
            in_channels,
            3,
            kernel_size=1,
            num_style_feat=num_style_feat,
            demodulate=False,
            sample_mode=None,
            interpolation_mode=interpolation_mode,
        )
        self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
    def forward(self, x, style, skip=None):
        """Forward function.
        Args:
            x (Tensor): Feature tensor with shape (b, c, h, w).
            style (Tensor): Tensor with shape (b, num_style_feat).
            skip (Tensor): Base/skip tensor. Default: None.
        Returns:
            Tensor: RGB images.
        """
        out = self.modulated_conv(x, style)
        out = out + self.bias
        if skip is not None:
            if self.upsample:
                skip = F.interpolate(
                    skip,
                    scale_factor=2,
                    mode=self.interpolation_mode,
                    align_corners=self.align_corners,
                )
            out = out + skip
        return out
class ConstantInput(nn.Module):
    """Constant input.
    Args:
        num_channel (int): Channel number of constant input.
        size (int): Spatial size of constant input.
    """
    def __init__(self, num_channel, size):
        super(ConstantInput, self).__init__()
        self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
    def forward(self, batch):
        out = self.weight.repeat(batch, 1, 1, 1)
        return out
class StyleGAN2GeneratorBilinear(nn.Module):
    """StyleGAN2 Generator.
    Args:
        out_size (int): The spatial size of outputs.
        num_style_feat (int): Channel number of style features. Default: 512.
        num_mlp (int): Layer number of MLP style layers. Default: 8.
        channel_multiplier (int): Channel multiplier for large networks of
            StyleGAN2. Default: 2.
        lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
        narrow (float): Narrow ratio for channels. Default: 1.0.
    """
    def __init__(
        self,
        out_size,
        num_style_feat=512,
        num_mlp=8,
        channel_multiplier=2,
        lr_mlp=0.01,
        narrow=1,
        interpolation_mode="bilinear",
    ):
        super(StyleGAN2GeneratorBilinear, self).__init__()
        # Style MLP layers
        self.num_style_feat = num_style_feat
        style_mlp_layers = [NormStyleCode()]
        for i in range(num_mlp):
            style_mlp_layers.append(
                EqualLinear(
                    num_style_feat,
                    num_style_feat,
                    bias=True,
                    bias_init_val=0,
                    lr_mul=lr_mlp,
                    activation="fused_lrelu",
                )
            )
        self.style_mlp = nn.Sequential(*style_mlp_layers)
        channels = {
            "4": int(512 * narrow),
            "8": int(512 * narrow),
            "16": int(512 * narrow),
            "32": int(512 * narrow),
            "64": int(256 * channel_multiplier * narrow),
            "128": int(128 * channel_multiplier * narrow),
            "256": int(64 * channel_multiplier * narrow),
            "512": int(32 * channel_multiplier * narrow),
            "1024": int(16 * channel_multiplier * narrow),
        }
        self.channels = channels
        self.constant_input = ConstantInput(channels["4"], size=4)
        self.style_conv1 = StyleConv(
            channels["4"],
            channels["4"],
            kernel_size=3,
            num_style_feat=num_style_feat,
            demodulate=True,
            sample_mode=None,
            interpolation_mode=interpolation_mode,
        )
        self.to_rgb1 = ToRGB(
            channels["4"],
            num_style_feat,
            upsample=False,
            interpolation_mode=interpolation_mode,
        )
        self.log_size = int(math.log(out_size, 2))
        self.num_layers = (self.log_size - 2) * 2 + 1
        self.num_latent = self.log_size * 2 - 2
        self.style_convs = nn.ModuleList()
        self.to_rgbs = nn.ModuleList()
        self.noises = nn.Module()
        in_channels = channels["4"]
        # noise
        for layer_idx in range(self.num_layers):
            resolution = 2 ** ((layer_idx + 5) // 2)
            shape = [1, 1, resolution, resolution]
            self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape))
        # style convs and to_rgbs
        for i in range(3, self.log_size + 1):
            out_channels = channels[f"{2**i}"]
            self.style_convs.append(
                StyleConv(
                    in_channels,
                    out_channels,
                    kernel_size=3,
                    num_style_feat=num_style_feat,
                    demodulate=True,
                    sample_mode="upsample",
                    interpolation_mode=interpolation_mode,
                )
            )
            self.style_convs.append(
                StyleConv(
                    out_channels,
                    out_channels,
                    kernel_size=3,
                    num_style_feat=num_style_feat,
                    demodulate=True,
                    sample_mode=None,
                    interpolation_mode=interpolation_mode,
                )
            )
            self.to_rgbs.append(
                ToRGB(
                    out_channels,
                    num_style_feat,
                    upsample=True,
                    interpolation_mode=interpolation_mode,
                )
            )
            in_channels = out_channels
    def make_noise(self):
        """Make noise for noise injection."""
        device = self.constant_input.weight.device
        noises = [torch.randn(1, 1, 4, 4, device=device)]
        for i in range(3, self.log_size + 1):
            for _ in range(2):
                noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
        return noises
    def get_latent(self, x):
        return self.style_mlp(x)
    def mean_latent(self, num_latent):
        latent_in = torch.randn(
            num_latent, self.num_style_feat, device=self.constant_input.weight.device
        )
        latent = self.style_mlp(latent_in).mean(0, keepdim=True)
        return latent
    def forward(
        self,
        styles,
        input_is_latent=False,
        noise=None,
        randomize_noise=True,
        truncation=1,
        truncation_latent=None,
        inject_index=None,
        return_latents=False,
    ):
        """Forward function for StyleGAN2Generator.
        Args:
            styles (list[Tensor]): Sample codes of styles.
            input_is_latent (bool): Whether input is latent style.
                Default: False.
            noise (Tensor | None): Input noise or None. Default: None.
            randomize_noise (bool): Randomize noise, used when 'noise' is
                False. Default: True.
            truncation (float): TODO. Default: 1.
            truncation_latent (Tensor | None): TODO. Default: None.
            inject_index (int | None): The injection index for mixing noise.
                Default: None.
            return_latents (bool): Whether to return style latents.
                Default: False.
        """
        # style codes -> latents with Style MLP layer
        if not input_is_latent:
            styles = [self.style_mlp(s) for s in styles]
        # noises
        if noise is None:
            if randomize_noise:
                noise = [None] * self.num_layers  # for each style conv layer
            else:  # use the stored noise
                noise = [
                    getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
                ]
        # style truncation
        if truncation < 1:
            style_truncation = []
            for style in styles:
                style_truncation.append(
                    truncation_latent + truncation * (style - truncation_latent)
                )
            styles = style_truncation
        # get style latent with injection
        if len(styles) == 1:
            inject_index = self.num_latent
            if styles[0].ndim < 3:
                # repeat latent code for all the layers
                latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
            else:  # used for encoder with different latent code for each layer
                latent = styles[0]
        elif len(styles) == 2:  # mixing noises
            if inject_index is None:
                inject_index = random.randint(1, self.num_latent - 1)
            latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
            latent2 = (
                styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
            )
            latent = torch.cat([latent1, latent2], 1)
        # main generation
        out = self.constant_input(latent.shape[0])
        out = self.style_conv1(out, latent[:, 0], noise=noise[0])
        skip = self.to_rgb1(out, latent[:, 1])
        i = 1
        for conv1, conv2, noise1, noise2, to_rgb in zip(
            self.style_convs[::2],
            self.style_convs[1::2],
            noise[1::2],
            noise[2::2],
            self.to_rgbs,
        ):
            out = conv1(out, latent[:, i], noise=noise1)
            out = conv2(out, latent[:, i + 1], noise=noise2)
            skip = to_rgb(out, latent[:, i + 2], skip)
            i += 2
        image = skip
        if return_latents:
            return image, latent
        else:
            return image, None
class ScaledLeakyReLU(nn.Module):
    """Scaled LeakyReLU.
    Args:
        negative_slope (float): Negative slope. Default: 0.2.
    """
    def __init__(self, negative_slope=0.2):
        super(ScaledLeakyReLU, self).__init__()
        self.negative_slope = negative_slope
    def forward(self, x):
        out = F.leaky_relu(x, negative_slope=self.negative_slope)
        return out * math.sqrt(2)
class EqualConv2d(nn.Module):
    """Equalized Linear as StyleGAN2.
    Args:
        in_channels (int): Channel number of the input.
        out_channels (int): Channel number of the output.
        kernel_size (int): Size of the convolving kernel.
        stride (int): Stride of the convolution. Default: 1
        padding (int): Zero-padding added to both sides of the input.
            Default: 0.
        bias (bool): If ``True``, adds a learnable bias to the output.
            Default: ``True``.
        bias_init_val (float): Bias initialized value. Default: 0.
    """
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        bias=True,
        bias_init_val=0,
    ):
        super(EqualConv2d, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
        self.weight = nn.Parameter(
            torch.randn(out_channels, in_channels, kernel_size, kernel_size)
        )
        if bias:
            self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
        else:
            self.register_parameter("bias", None)
    def forward(self, x):
        out = F.conv2d(
            x,
            self.weight * self.scale,
            bias=self.bias,
            stride=self.stride,
            padding=self.padding,
        )
        return out
    def __repr__(self):
        return (
            f"{self.__class__.__name__}(in_channels={self.in_channels}, "
            f"out_channels={self.out_channels}, "
            f"kernel_size={self.kernel_size},"
            f" stride={self.stride}, padding={self.padding}, "
            f"bias={self.bias is not None})"
        )
class ConvLayer(nn.Sequential):
    """Conv Layer used in StyleGAN2 Discriminator.
    Args:
        in_channels (int): Channel number of the input.
        out_channels (int): Channel number of the output.
        kernel_size (int): Kernel size.
        downsample (bool): Whether downsample by a factor of 2.
            Default: False.
        bias (bool): Whether with bias. Default: True.
        activate (bool): Whether use activateion. Default: True.
    """
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        downsample=False,
        bias=True,
        activate=True,
        interpolation_mode="bilinear",
    ):
        layers = []
        self.interpolation_mode = interpolation_mode
        # downsample
        if downsample:
            if self.interpolation_mode == "nearest":
                self.align_corners = None
            else:
                self.align_corners = False
            layers.append(
                torch.nn.Upsample(
                    scale_factor=0.5,
                    mode=interpolation_mode,
                    align_corners=self.align_corners,
                )
            )
        stride = 1
        self.padding = kernel_size // 2
        # conv
        layers.append(
            EqualConv2d(
                in_channels,
                out_channels,
                kernel_size,
                stride=stride,
                padding=self.padding,
                bias=bias and not activate,
            )
        )
        # activation
        if activate:
            if bias:
                layers.append(FusedLeakyReLU(out_channels))
            else:
                layers.append(ScaledLeakyReLU(0.2))
        super(ConvLayer, self).__init__(*layers)
class ResBlock(nn.Module):
    """Residual block used in StyleGAN2 Discriminator.
    Args:
        in_channels (int): Channel number of the input.
        out_channels (int): Channel number of the output.
    """
    def __init__(self, in_channels, out_channels, interpolation_mode="bilinear"):
        super(ResBlock, self).__init__()
        self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
        self.conv2 = ConvLayer(
            in_channels,
            out_channels,
            3,
            downsample=True,
            interpolation_mode=interpolation_mode,
            bias=True,
            activate=True,
        )
        self.skip = ConvLayer(
            in_channels,
            out_channels,
            1,
            downsample=True,
            interpolation_mode=interpolation_mode,
            bias=False,
            activate=False,
        )
    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        skip = self.skip(x)
        out = (out + skip) / math.sqrt(2)
        return out
 | 
