Spaces:
Runtime error
Runtime error
| # pylint: skip-file | |
| # type: ignore | |
| import math | |
| import random | |
| import torch | |
| from torch import nn | |
| from .gfpganv1_arch import ResUpBlock | |
| from .stylegan2_bilinear_arch import ( | |
| ConvLayer, | |
| EqualConv2d, | |
| EqualLinear, | |
| ResBlock, | |
| ScaledLeakyReLU, | |
| StyleGAN2GeneratorBilinear, | |
| ) | |
| class StyleGAN2GeneratorBilinearSFT(StyleGAN2GeneratorBilinear): | |
| """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform). | |
| It is the bilinear version. It does not use the complicated UpFirDnSmooth function that is not friendly for | |
| deployment. It can be easily converted to the clean version: StyleGAN2GeneratorCSFT. | |
| Args: | |
| out_size (int): The spatial size of outputs. | |
| num_style_feat (int): Channel number of style features. Default: 512. | |
| num_mlp (int): Layer number of MLP style layers. Default: 8. | |
| channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. | |
| lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. | |
| narrow (float): The narrow ratio for channels. Default: 1. | |
| sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. | |
| """ | |
| def __init__( | |
| self, | |
| out_size, | |
| num_style_feat=512, | |
| num_mlp=8, | |
| channel_multiplier=2, | |
| lr_mlp=0.01, | |
| narrow=1, | |
| sft_half=False, | |
| ): | |
| super(StyleGAN2GeneratorBilinearSFT, self).__init__( | |
| out_size, | |
| num_style_feat=num_style_feat, | |
| num_mlp=num_mlp, | |
| channel_multiplier=channel_multiplier, | |
| lr_mlp=lr_mlp, | |
| narrow=narrow, | |
| ) | |
| self.sft_half = sft_half | |
| def forward( | |
| self, | |
| styles, | |
| conditions, | |
| input_is_latent=False, | |
| noise=None, | |
| randomize_noise=True, | |
| truncation=1, | |
| truncation_latent=None, | |
| inject_index=None, | |
| return_latents=False, | |
| ): | |
| """Forward function for StyleGAN2GeneratorBilinearSFT. | |
| Args: | |
| styles (list[Tensor]): Sample codes of styles. | |
| conditions (list[Tensor]): SFT conditions to generators. | |
| input_is_latent (bool): Whether input is latent style. Default: False. | |
| noise (Tensor | None): Input noise or None. Default: None. | |
| randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. | |
| truncation (float): The truncation ratio. Default: 1. | |
| truncation_latent (Tensor | None): The truncation latent tensor. Default: None. | |
| inject_index (int | None): The injection index for mixing noise. Default: None. | |
| return_latents (bool): Whether to return style latents. Default: False. | |
| """ | |
| # style codes -> latents with Style MLP layer | |
| if not input_is_latent: | |
| styles = [self.style_mlp(s) for s in styles] | |
| # noises | |
| if noise is None: | |
| if randomize_noise: | |
| noise = [None] * self.num_layers # for each style conv layer | |
| else: # use the stored noise | |
| noise = [ | |
| getattr(self.noises, f"noise{i}") for i in range(self.num_layers) | |
| ] | |
| # style truncation | |
| if truncation < 1: | |
| style_truncation = [] | |
| for style in styles: | |
| style_truncation.append( | |
| truncation_latent + truncation * (style - truncation_latent) | |
| ) | |
| styles = style_truncation | |
| # get style latents with injection | |
| if len(styles) == 1: | |
| inject_index = self.num_latent | |
| if styles[0].ndim < 3: | |
| # repeat latent code for all the layers | |
| latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
| else: # used for encoder with different latent code for each layer | |
| latent = styles[0] | |
| elif len(styles) == 2: # mixing noises | |
| if inject_index is None: | |
| inject_index = random.randint(1, self.num_latent - 1) | |
| latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
| latent2 = ( | |
| styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) | |
| ) | |
| latent = torch.cat([latent1, latent2], 1) | |
| # main generation | |
| out = self.constant_input(latent.shape[0]) | |
| out = self.style_conv1(out, latent[:, 0], noise=noise[0]) | |
| skip = self.to_rgb1(out, latent[:, 1]) | |
| i = 1 | |
| for conv1, conv2, noise1, noise2, to_rgb in zip( | |
| self.style_convs[::2], | |
| self.style_convs[1::2], | |
| noise[1::2], | |
| noise[2::2], | |
| self.to_rgbs, | |
| ): | |
| out = conv1(out, latent[:, i], noise=noise1) | |
| # the conditions may have fewer levels | |
| if i < len(conditions): | |
| # SFT part to combine the conditions | |
| if self.sft_half: # only apply SFT to half of the channels | |
| out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1) | |
| out_sft = out_sft * conditions[i - 1] + conditions[i] | |
| out = torch.cat([out_same, out_sft], dim=1) | |
| else: # apply SFT to all the channels | |
| out = out * conditions[i - 1] + conditions[i] | |
| out = conv2(out, latent[:, i + 1], noise=noise2) | |
| skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space | |
| i += 2 | |
| image = skip | |
| if return_latents: | |
| return image, latent | |
| else: | |
| return image, None | |
| class GFPGANBilinear(nn.Module): | |
| """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT. | |
| It is the bilinear version and it does not use the complicated UpFirDnSmooth function that is not friendly for | |
| deployment. It can be easily converted to the clean version: GFPGANv1Clean. | |
| Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. | |
| Args: | |
| out_size (int): The spatial size of outputs. | |
| num_style_feat (int): Channel number of style features. Default: 512. | |
| channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. | |
| decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None. | |
| fix_decoder (bool): Whether to fix the decoder. Default: True. | |
| num_mlp (int): Layer number of MLP style layers. Default: 8. | |
| lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. | |
| input_is_latent (bool): Whether input is latent style. Default: False. | |
| different_w (bool): Whether to use different latent w for different layers. Default: False. | |
| narrow (float): The narrow ratio for channels. Default: 1. | |
| sft_half (bool): Whether to apply SFT on half of the input channels. Default: False. | |
| """ | |
| def __init__( | |
| self, | |
| out_size, | |
| num_style_feat=512, | |
| channel_multiplier=1, | |
| decoder_load_path=None, | |
| fix_decoder=True, | |
| # for stylegan decoder | |
| num_mlp=8, | |
| lr_mlp=0.01, | |
| input_is_latent=False, | |
| different_w=False, | |
| narrow=1, | |
| sft_half=False, | |
| ): | |
| super(GFPGANBilinear, self).__init__() | |
| self.input_is_latent = input_is_latent | |
| self.different_w = different_w | |
| self.num_style_feat = num_style_feat | |
| self.min_size_restriction = 512 | |
| unet_narrow = narrow * 0.5 # by default, use a half of input channels | |
| channels = { | |
| "4": int(512 * unet_narrow), | |
| "8": int(512 * unet_narrow), | |
| "16": int(512 * unet_narrow), | |
| "32": int(512 * unet_narrow), | |
| "64": int(256 * channel_multiplier * unet_narrow), | |
| "128": int(128 * channel_multiplier * unet_narrow), | |
| "256": int(64 * channel_multiplier * unet_narrow), | |
| "512": int(32 * channel_multiplier * unet_narrow), | |
| "1024": int(16 * channel_multiplier * unet_narrow), | |
| } | |
| self.log_size = int(math.log(out_size, 2)) | |
| first_out_size = 2 ** (int(math.log(out_size, 2))) | |
| self.conv_body_first = ConvLayer( | |
| 3, channels[f"{first_out_size}"], 1, bias=True, activate=True | |
| ) | |
| # downsample | |
| in_channels = channels[f"{first_out_size}"] | |
| self.conv_body_down = nn.ModuleList() | |
| for i in range(self.log_size, 2, -1): | |
| out_channels = channels[f"{2**(i - 1)}"] | |
| self.conv_body_down.append(ResBlock(in_channels, out_channels)) | |
| in_channels = out_channels | |
| self.final_conv = ConvLayer( | |
| in_channels, channels["4"], 3, bias=True, activate=True | |
| ) | |
| # upsample | |
| in_channels = channels["4"] | |
| self.conv_body_up = nn.ModuleList() | |
| for i in range(3, self.log_size + 1): | |
| out_channels = channels[f"{2**i}"] | |
| self.conv_body_up.append(ResUpBlock(in_channels, out_channels)) | |
| in_channels = out_channels | |
| # to RGB | |
| self.toRGB = nn.ModuleList() | |
| for i in range(3, self.log_size + 1): | |
| self.toRGB.append( | |
| EqualConv2d( | |
| channels[f"{2**i}"], | |
| 3, | |
| 1, | |
| stride=1, | |
| padding=0, | |
| bias=True, | |
| bias_init_val=0, | |
| ) | |
| ) | |
| if different_w: | |
| linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat | |
| else: | |
| linear_out_channel = num_style_feat | |
| self.final_linear = EqualLinear( | |
| channels["4"] * 4 * 4, | |
| linear_out_channel, | |
| bias=True, | |
| bias_init_val=0, | |
| lr_mul=1, | |
| activation=None, | |
| ) | |
| # the decoder: stylegan2 generator with SFT modulations | |
| self.stylegan_decoder = StyleGAN2GeneratorBilinearSFT( | |
| out_size=out_size, | |
| num_style_feat=num_style_feat, | |
| num_mlp=num_mlp, | |
| channel_multiplier=channel_multiplier, | |
| lr_mlp=lr_mlp, | |
| narrow=narrow, | |
| sft_half=sft_half, | |
| ) | |
| # load pre-trained stylegan2 model if necessary | |
| if decoder_load_path: | |
| self.stylegan_decoder.load_state_dict( | |
| torch.load( | |
| decoder_load_path, map_location=lambda storage, loc: storage | |
| )["params_ema"] | |
| ) | |
| # fix decoder without updating params | |
| if fix_decoder: | |
| for _, param in self.stylegan_decoder.named_parameters(): | |
| param.requires_grad = False | |
| # for SFT modulations (scale and shift) | |
| self.condition_scale = nn.ModuleList() | |
| self.condition_shift = nn.ModuleList() | |
| for i in range(3, self.log_size + 1): | |
| out_channels = channels[f"{2**i}"] | |
| if sft_half: | |
| sft_out_channels = out_channels | |
| else: | |
| sft_out_channels = out_channels * 2 | |
| self.condition_scale.append( | |
| nn.Sequential( | |
| EqualConv2d( | |
| out_channels, | |
| out_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| bias=True, | |
| bias_init_val=0, | |
| ), | |
| ScaledLeakyReLU(0.2), | |
| EqualConv2d( | |
| out_channels, | |
| sft_out_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| bias=True, | |
| bias_init_val=1, | |
| ), | |
| ) | |
| ) | |
| self.condition_shift.append( | |
| nn.Sequential( | |
| EqualConv2d( | |
| out_channels, | |
| out_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| bias=True, | |
| bias_init_val=0, | |
| ), | |
| ScaledLeakyReLU(0.2), | |
| EqualConv2d( | |
| out_channels, | |
| sft_out_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| bias=True, | |
| bias_init_val=0, | |
| ), | |
| ) | |
| ) | |
| def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True): | |
| """Forward function for GFPGANBilinear. | |
| Args: | |
| x (Tensor): Input images. | |
| return_latents (bool): Whether to return style latents. Default: False. | |
| return_rgb (bool): Whether return intermediate rgb images. Default: True. | |
| randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True. | |
| """ | |
| conditions = [] | |
| unet_skips = [] | |
| out_rgbs = [] | |
| # encoder | |
| feat = self.conv_body_first(x) | |
| for i in range(self.log_size - 2): | |
| feat = self.conv_body_down[i](feat) | |
| unet_skips.insert(0, feat) | |
| feat = self.final_conv(feat) | |
| # style code | |
| style_code = self.final_linear(feat.view(feat.size(0), -1)) | |
| if self.different_w: | |
| style_code = style_code.view(style_code.size(0), -1, self.num_style_feat) | |
| # decode | |
| for i in range(self.log_size - 2): | |
| # add unet skip | |
| feat = feat + unet_skips[i] | |
| # ResUpLayer | |
| feat = self.conv_body_up[i](feat) | |
| # generate scale and shift for SFT layers | |
| scale = self.condition_scale[i](feat) | |
| conditions.append(scale.clone()) | |
| shift = self.condition_shift[i](feat) | |
| conditions.append(shift.clone()) | |
| # generate rgb images | |
| if return_rgb: | |
| out_rgbs.append(self.toRGB[i](feat)) | |
| # decoder | |
| image, _ = self.stylegan_decoder( | |
| [style_code], | |
| conditions, | |
| return_latents=return_latents, | |
| input_is_latent=self.input_is_latent, | |
| randomize_noise=randomize_noise, | |
| ) | |
| return image, out_rgbs | |