Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,57 @@
|
|
1 |
-
import gradio as gr
|
2 |
import torch
|
3 |
-
|
|
|
4 |
from torch_geometric.utils import from_networkx
|
5 |
import networkx as nx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
model.eval()
|
9 |
|
10 |
-
|
11 |
-
|
12 |
G = nx.Graph()
|
13 |
G.add_edges_from([(0, 1), (1, 2)])
|
14 |
-
nx.set_node_attributes(G, {i: [1, 0, 0, 1, 0, 1, 0] for i in G.nodes}, "x") # vector
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
pyg_data.batch = torch.tensor([0] * pyg_data.num_nodes)
|
21 |
|
22 |
-
|
23 |
with torch.no_grad():
|
24 |
-
out = model(
|
25 |
pred = out.argmax(dim=1).item()
|
26 |
|
27 |
-
return "Mutagénico" if pred == 1 else "No mutagénico"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
title="Clasificador de Moléculas con GNN",
|
31 |
-
description="Demo simple de GCN sobre grafos moleculares (MUTAG)").launch()
|
|
|
|
|
1 |
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch_geometric.nn import GCNConv, global_mean_pool
|
4 |
from torch_geometric.utils import from_networkx
|
5 |
import networkx as nx
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# --- Mismo modelo que en Colab ---
|
9 |
+
class GCN(torch.nn.Module):
|
10 |
+
def __init__(self, hidden_channels=64):
|
11 |
+
super().__init__()
|
12 |
+
self.conv1 = GCNConv(7, hidden_channels)
|
13 |
+
self.conv2 = GCNConv(hidden_channels, hidden_channels)
|
14 |
+
self.lin = torch.nn.Linear(hidden_channels, 2)
|
15 |
|
16 |
+
def forward(self, x, edge_index, batch):
|
17 |
+
x = self.conv1(x, edge_index)
|
18 |
+
x = F.relu(x)
|
19 |
+
x = self.conv2(x, edge_index)
|
20 |
+
x = F.relu(x)
|
21 |
+
x = global_mean_pool(x, batch)
|
22 |
+
return self.lin(x)
|
23 |
+
|
24 |
+
# --- Carga de modelo entrenado ---
|
25 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
+
model = GCN().to(device)
|
27 |
+
model.load_state_dict(torch.load("model_gcn.pth", map_location=device))
|
28 |
model.eval()
|
29 |
|
30 |
+
# --- Función de predicción sobre un grafo ejemplo ---
|
31 |
+
def demo_predict():
|
32 |
G = nx.Graph()
|
33 |
G.add_edges_from([(0, 1), (1, 2)])
|
34 |
+
nx.set_node_attributes(G, {i: [1, 0, 0, 1, 0, 1, 0] for i in G.nodes}, "x") # vector de 7 dimensiones
|
35 |
|
36 |
+
data = from_networkx(G)
|
37 |
+
data.x = torch.tensor(list(nx.get_node_attributes(G, "x").values()), dtype=torch.float)
|
38 |
+
data.edge_index = data.edge_index
|
39 |
+
data.batch = torch.tensor([0] * data.num_nodes)
|
|
|
40 |
|
41 |
+
data = data.to(device)
|
42 |
with torch.no_grad():
|
43 |
+
out = model(data.x, data.edge_index, data.batch)
|
44 |
pred = out.argmax(dim=1).item()
|
45 |
|
46 |
+
return "Mutagénico ✅" if pred == 1 else "No mutagénico ❌"
|
47 |
+
|
48 |
+
# --- Interfaz Gradio ---
|
49 |
+
demo = gr.Interface(
|
50 |
+
fn=demo_predict,
|
51 |
+
inputs=[],
|
52 |
+
outputs="text",
|
53 |
+
title="Clasificador de Moléculas con GCN",
|
54 |
+
description="Este demo usa una red neuronal en grafo entrenada sobre MUTAG para clasificar moléculas como mutagénicas o no."
|
55 |
+
)
|
56 |
|
57 |
+
demo.launch()
|
|
|
|