import gradio as gr import torch from torch_geometric.data import Data from torch_geometric.utils import from_networkx import networkx as nx # Usamos el modelo GCN previamente entrenado (podrías cambiar por GAT si lo prefieres) model.eval() def predict_mutagenicity(): # Creamos un grafo de prueba simple (3 nodos conectados) G = nx.Graph() G.add_edges_from([(0, 1), (1, 2)]) nx.set_node_attributes(G, {i: [1, 0, 0, 1, 0, 1, 0] for i in G.nodes}, "x") # vector ficticio # Convertimos a objeto PyG pyg_data = from_networkx(G) pyg_data.x = torch.tensor(list(nx.get_node_attributes(G, 'x').values()), dtype=torch.float) pyg_data.edge_index = pyg_data.edge_index pyg_data.batch = torch.tensor([0] * pyg_data.num_nodes) pyg_data = pyg_data.to(device) with torch.no_grad(): out = model(pyg_data.x, pyg_data.edge_index, pyg_data.batch) pred = out.argmax(dim=1).item() return "Mutagénico" if pred == 1 else "No mutagénico" gr.Interface(fn=predict_mutagenicity, inputs=[], outputs="text", title="Clasificador de Moléculas con GNN", description="Demo simple de GCN sobre grafos moleculares (MUTAG)").launch()