Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,31 @@
|
|
1 |
-
from fastai.vision.all import *
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
# Esto es solo para inicializar el modelo correctamente
|
8 |
-
dls = ImageDataLoaders.from_name_func(
|
9 |
-
path='.',
|
10 |
-
fnames=get_image_files('.'),
|
11 |
-
label_func=lambda x: 'placeholder',
|
12 |
-
valid_pct=0.2,
|
13 |
-
item_tfms=Resize(128),
|
14 |
-
bs=1
|
15 |
-
)
|
16 |
-
|
17 |
-
# ---------------------------------------------------------
|
18 |
-
# 2. Crea el learner y carga el modelo desde .pth
|
19 |
-
# ---------------------------------------------------------
|
20 |
-
learn = cnn_learner(dls, resnet18, metrics=accuracy)
|
21 |
-
learn.load('resnet18_blindness')
|
22 |
-
|
23 |
-
# Define tus clases manualmente si no están en dls.vocab
|
24 |
-
labels = ['No Blindness', 'Blindness']
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
# ---------------------------------------------------------
|
36 |
-
gr.Interface(
|
37 |
fn=predict,
|
38 |
-
inputs=gr.Image(
|
39 |
-
outputs=gr.Label(num_top_classes=
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
6 |
|
7 |
+
# Cargar el modelo desde Hugging Face Hub
|
8 |
+
model = AutoModelForImageClassification.from_pretrained("AdrianRevi/Practica1Blindness")
|
9 |
+
extractor = AutoFeatureExtractor.from_pretrained("AdrianRevi/Practica1Blindness")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Preprocesamiento
|
12 |
+
def predict(img: Image.Image):
|
13 |
+
inputs = extractor(images=img, return_tensors="pt")
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**inputs)
|
16 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
17 |
+
labels = model.config.id2label
|
18 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
19 |
|
20 |
+
# Interfaz Gradio
|
21 |
+
demo = gr.Interface(
|
|
|
|
|
22 |
fn=predict,
|
23 |
+
inputs=gr.Image(type="pil"),
|
24 |
+
outputs=gr.Label(num_top_classes=3),
|
25 |
+
examples=["examples/20068.jpg", "examples/20084.jpg"],
|
26 |
+
title="Blindness Detection",
|
27 |
+
description="Sube una imagen del ojo para detectar el grado de ceguera.",
|
28 |
+
)
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
demo.launch()
|