Spaces:
Sleeping
Sleeping
File size: 21,669 Bytes
a23082c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import os
import logging
import mimetypes
from dotenv import load_dotenv
from typing import Any, List
import gradio as gr
import requests
import pandas as pd
from llama_index.core.agent.workflow import AgentWorkflow, ToolCallResult, ToolCall, AgentOutput
from llama_index.core.base.llms.types import ChatMessage, TextBlock, ImageBlock, AudioBlock
# Assuming agent initializers are in the same directory or a known path
# Adjust import paths if necessary based on deployment structure
try:
# Existing agents
from agents.image_analyzer_agent import initialize_image_analyzer_agent
from agents.reasoning_agent import initialize_reasoning_agent
from agents.text_analyzer_agent import initialize_text_analyzer_agent
from agents.code_agent import initialize_code_agent
from agents.math_agent import initialize_math_agent
from agents.planner_agent import initialize_planner_agent
from agents.research_agent import initialize_research_agent
from agents.role_agent import initialize_role_agent
from agents.verifier_agent import initialize_verifier_agent
# New agents
from agents.advanced_validation_agent import initialize_advanced_validation_agent
from agents.figure_interpretation_agent import initialize_figure_interpretation_agent
from agents.long_context_management_agent import initialize_long_context_management_agent
AGENT_IMPORT_PATH = "local"
except ImportError as e:
# Fallback for potential different structures (e.g., nested folder)
try:
from final_project.image_analyzer_agent import initialize_image_analyzer_agent
from final_project.reasoning_agent import initialize_reasoning_agent
from final_project.text_analyzer_agent import initialize_text_analyzer_agent
from final_project.code_agent import initialize_code_agent
from final_project.math_agent import initialize_math_agent
from final_project.planner_agent import initialize_planner_agent
from final_project.research_agent import initialize_research_agent
from final_project.role_agent import initialize_role_agent
from final_project.verifier_agent import initialize_verifier_agent
from final_project.advanced_validation_agent import initialize_advanced_validation_agent
from final_project.figure_interpretation_agent import initialize_figure_interpretation_agent
from final_project.long_context_management_agent import initialize_long_context_management_agent
AGENT_IMPORT_PATH = "final_project"
except ImportError as e2:
print(f"Import Error: Could not find agent modules. Tried local and final_project paths. Error: {e2}")
# Set initializers to None or raise error to prevent app start
initialize_image_analyzer_agent = None
# ... set all others to None ...
raise RuntimeError(f"Failed to import agent modules: {e2}")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
load_dotenv() # Load environment variables from .env file
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Constants ---
DEFAULT_API_URL = os.getenv("GAIA_API_URL", "https://agents-course-unit4-scoring.hf.space")
# --- Agent Initialization (Singleton Pattern) ---
# Initialize the agent workflow once
AGENT_WORKFLOW = None
try:
logger.info(f"Initializing GAIA Multi-Agent Workflow (import path: {AGENT_IMPORT_PATH})...")
# Existing agents
role_agent = initialize_role_agent()
code_agent = initialize_code_agent()
math_agent = initialize_math_agent()
planner_agent = initialize_planner_agent()
research_agent = initialize_research_agent()
text_analyzer_agent = initialize_text_analyzer_agent()
verifier_agent = initialize_verifier_agent()
image_analyzer_agent = initialize_image_analyzer_agent()
reasoning_agent = initialize_reasoning_agent()
# New agents
advanced_validation_agent = initialize_advanced_validation_agent()
figure_interpretation_agent = initialize_figure_interpretation_agent()
long_context_management_agent = initialize_long_context_management_agent()
# Check if all agents initialized successfully
all_agents = [
code_agent, role_agent, math_agent, planner_agent, research_agent,
text_analyzer_agent, image_analyzer_agent, verifier_agent, reasoning_agent,
advanced_validation_agent, figure_interpretation_agent, long_context_management_agent
]
if not all(all_agents):
raise RuntimeError("One or more agents failed to initialize.")
AGENT_WORKFLOW = AgentWorkflow(
agents=all_agents,
root_agent="planner_agent" # Keep planner as root as per plan
)
logger.info("GAIA Multi-Agent Workflow initialized successfully.")
except Exception as e:
logger.error(f"FATAL: Error initializing agent workflow: {e}", exc_info=True)
# AGENT_WORKFLOW remains None, BasicAgent init will fail
# --- Basic Agent Definition (Wrapper for Workflow) ---
class BasicAgent:
def __init__(self, workflow: AgentWorkflow):
if workflow is None:
logger.error("AgentWorkflow is None, initialization likely failed.")
raise RuntimeError("AgentWorkflow failed to initialize. Check logs for details.")
self.agent_workflow = workflow
logger.info("BasicAgent wrapper initialized.")
async def __call__(self, question: str | ChatMessage) -> Any:
if isinstance(question, ChatMessage):
log_question = str(question.blocks[0].text)[:100] if question.blocks and hasattr(question.blocks[0], "text") else str(question)[:100]
logger.info(f"Agent received question (first 100 chars): {log_question}...")
else:
logger.info(f"Agent received question (first 100 chars): {question[:100]}...")
handler = self.agent_workflow.run(user_msg=question)
current_agent = None
async for event in handler.stream_events():
if (
hasattr(event, "current_agent_name")
and event.current_agent_name != current_agent
):
current_agent = event.current_agent_name
logger.info(f"{'=' * 50}\n")
logger.info(f"{'=' * 50}\n")
# Optional detailed logging (uncomment if needed)
# from llama_index.core.agent.runner.base import AgentStream, AgentInput
# if isinstance(event, AgentStream):
# if event.delta:
# logger.debug(f"STREAM: {event.delta}") # Use debug level
# elif isinstance(event, AgentInput):
# logger.debug(f"π₯ Input: {event.input}") # Use debug level
elif isinstance(event, AgentOutput):
if event.response and hasattr(event.response, 'content') and event.response.content:
logger.info(f"π€ Output: {event.response.content}")
if event.tool_calls:
logger.info(
f"π οΈ Planning to use tools: {[call.tool_name for call in event.tool_calls]}"
)
elif isinstance(event, ToolCallResult):
logger.info(f"π§ Tool Result ({event.tool_name}):")
logger.info(f" Arguments: {event.tool_kwargs}")
# Limit output logging length if potentially very long
output_str = str(event.tool_output)
logger.info(f" Output: {output_str[:500]}{'...' if len(output_str) > 500 else ''}")
elif isinstance(event, ToolCall):
logger.info(f"π¨ Calling Tool: {event.tool_name}")
logger.info(f" With arguments: {event.tool_kwargs}")
answer = await handler
final_content = answer.response.content if hasattr(answer, 'response') and hasattr(answer.response, 'content') else str(answer)
logger.info(f"Agent returning final answer: {final_content[:500]}{'...' if len(final_content) > 500 else ''}")
return answer.response # Return the actual response object expected by Gradio
# --- Helper Functions for run_and_submit_all ---
async def fetch_questions(questions_url: str) -> List[dict] | None:
"""Fetches questions from the GAIA benchmark API."""
logger.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=30) # Increased timeout
response.raise_for_status()
questions_data = response.json()
if not questions_data:
logger.warning("Fetched questions list is empty.")
return None
logger.info(f"Fetched {len(questions_data)} questions.")
return questions_data
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching questions: {e}", exc_info=True)
return None
except requests.exceptions.JSONDecodeError as e:
logger.error(f"Error decoding JSON response from questions endpoint: {e}", exc_info=True)
logger.error(f"Response text: {response.text[:500]}")
return None
except Exception as e:
logger.error(f"An unexpected error occurred fetching questions: {e}", exc_info=True)
return None
async def process_question(agent: BasicAgent, item: dict, base_fetch_file_url: str) -> dict | None:
"""Processes a single question item using the agent."""
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name")
if not task_id or question_text is None:
logger.warning(f"Skipping item with missing task_id or question: {item}")
return None
message: ChatMessage
if file_name:
fetch_file_url = f"{base_fetch_file_url}/{task_id}"
logger.info(f"Fetching file '{file_name}' for task {task_id} from {fetch_file_url}")
try:
response = requests.get(fetch_file_url, timeout=60) # Increased timeout for files
response.raise_for_status()
mime_type, _ = mimetypes.guess_type(file_name)
logger.info(f"File '{file_name}' MIME type guessed as: {mime_type}")
file_block: TextBlock | ImageBlock | AudioBlock | None = None
if mime_type:
# Prioritize specific extensions for text-like content
text_extensions = (
".txt", ".csv", ".json", ".xml", ".yaml", ".yml", ".ini", ".cfg", ".toml", ".log", ".properties",
".html", ".htm", ".xhtml", ".css", ".scss", ".sass", ".less", ".svg", ".md", ".rst",
".py", ".js", ".java", ".c", ".cpp", ".h", ".hpp", ".cs", ".go", ".php", ".rb", ".swift", ".kt",
".sh", ".bat", ".ipynb", ".Rmd", ".tex" # Added more code/markup types
)
if mime_type.startswith('text/') or file_name.lower().endswith(text_extensions):
try:
file_content = response.content.decode('utf-8') # Try UTF-8 first
except UnicodeDecodeError:
try:
file_content = response.content.decode('latin-1') # Fallback
logger.warning(f"Decoded file {file_name} using latin-1 fallback.")
except Exception as decode_err:
logger.error(f"Could not decode file {file_name}: {decode_err}")
file_content = f"[Error: Could not decode file content for {file_name}]"
file_block = TextBlock(block_type="text", text=file_content)
elif mime_type.startswith('image/'):
# Pass image content directly for multi-modal models
file_block = ImageBlock(url=fetch_file_url, image=response.content)
elif mime_type.startswith('audio/'):
# Pass audio content directly
file_block = AudioBlock(url=fetch_file_url, audio=response.content)
elif mime_type == 'application/pdf':
# PDF: Pass a text block indicating the URL for agents to handle
logger.info(f"PDF file detected: {file_name}. Passing reference URL.")
file_block = TextBlock(text=f"[Reference PDF file available at: {fetch_file_url}]")
# Add handling for other types like video if needed
# elif mime_type.startswith('video/'):
# logger.info(f"Video file detected: {file_name}. Passing reference URL.")
# file_block = TextBlock(text=f"[Reference Video file available at: {fetch_file_url}]")
if file_block:
blocks = [TextBlock(text=question_text), file_block]
message = ChatMessage(role="user", blocks=blocks)
else:
logger.warning(f"File type for '{file_name}' (MIME: {mime_type}) not directly supported for block creation or no block created (e.g., unsupported). Passing text question only.")
message = ChatMessage(role="user", blocks=[TextBlock(text=question_text)])
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching file for task {task_id}: {e}", exc_info=True)
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: Failed to fetch file {file_name} - {e}"}
except Exception as e:
logger.error(f"Error processing file for task {task_id}: {e}", exc_info=True)
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: Failed to process file {file_name} - {e}"}
else:
# No file associated with the question
message = ChatMessage(role="user", blocks=[TextBlock(text=question_text)])
# Run the agent on the prepared message
try:
logger.info(f"Running agent on task {task_id}...")
submitted_answer_response = await agent(message)
# Extract content safely
submitted_answer = submitted_answer_response.content if hasattr(submitted_answer_response, 'content') else str(submitted_answer_response)
logger.info(f"π Agent submitted answer for task {task_id}: {submitted_answer[:200]}{'...' if len(submitted_answer) > 200 else ''}")
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}
except Exception as e:
logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True)
return {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}
async def submit_answers(submit_url: str, username: str, agent_code: str, results: List[dict]) -> tuple[str, pd.DataFrame]:
"""Submits the collected answers to the GAIA benchmark API."""
answers_payload = [
{"task_id": r["Task ID"], "submitted_answer": r["Submitted Answer"]}
for r in results if "Submitted Answer" in r and not str(r["Submitted Answer"]).startswith("AGENT ERROR:")
]
if not answers_payload:
logger.warning("Agent did not produce any valid answers to submit.")
results_df = pd.DataFrame(results)
return "Agent did not produce any valid answers to submit.", results_df
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
logger.info(status_update)
logger.info(f"Submitting to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
logger.info("Submission successful.")
results_df = pd.DataFrame(results)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
logger.error(status_message)
results_df = pd.DataFrame(results)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
logger.error(status_message)
results_df = pd.DataFrame(results)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
logger.error(status_message)
results_df = pd.DataFrame(results)
return status_message, results_df
except Exception as e:
status_message = f"Submission Failed: An unexpected error occurred during submission - {e}"
logger.error(status_message, exc_info=True)
results_df = pd.DataFrame(results)
return status_message, results_df
# --- Main Function for Batch Processing ---
async def run_and_submit_all(
username: str,
agent_code: str,
api_url: str = DEFAULT_API_URL,
level: int = 1,
max_questions: int = 0, # 0 means all questions for the level
progress=gr.Progress(track_tqdm=True)
) -> tuple[str, pd.DataFrame]:
"""Fetches all questions for a level, runs the agent, and submits answers."""
if not AGENT_WORKFLOW:
error_msg = "Agent Workflow is not initialized. Cannot run benchmark."
logger.error(error_msg)
return error_msg, pd.DataFrame()
if not username or not username.strip():
error_msg = "Username cannot be empty."
logger.error(error_msg)
return error_msg, pd.DataFrame()
questions_url = f"{api_url}/questions?level={level}"
submit_url = f"{api_url}/submit"
base_fetch_file_url = f"{api_url}/get_file"
questions = await fetch_questions(questions_url)
if questions is None:
error_msg = f"Failed to fetch questions for level {level}. Check logs."
return error_msg, pd.DataFrame()
# Limit number of questions if max_questions is set
if max_questions > 0:
questions = questions[:max_questions]
logger.info(f"Processing a maximum of {max_questions} questions for level {level}.")
else:
logger.info(f"Processing all {len(questions)} questions for level {level}.")
agent = BasicAgent(AGENT_WORKFLOW)
results = []
total_questions = len(questions)
for i, item in enumerate(progress.tqdm(questions, desc=f"Processing Level {level} Questions")):
result = await process_question(agent, item, base_fetch_file_url)
if result:
results.append(result)
# Optional: Add a small delay between questions if needed
# await asyncio.sleep(0.1)
# Submit answers
final_status, results_df = await submit_answers(submit_url, username, agent_code, results)
return final_status, results_df
# --- Gradio Interface ---
def create_gradio_interface():
"""Creates and returns the Gradio interface."""
logger.info("Creating Gradio interface...")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# GAIA Benchmark Agent Runner")
gr.Markdown("Run the initialized multi-agent system against the GAIA benchmark questions and submit the results.")
with gr.Row():
username = gr.Textbox(label="Username", placeholder="Enter your username (e.g., [email protected])")
agent_code = gr.Textbox(label="Agent Code", placeholder="Enter a short code for your agent (e.g., v1.0)")
with gr.Row():
level = gr.Dropdown(label="Benchmark Level", choices=[1, 2, 3], value=1)
max_questions = gr.Number(label="Max Questions (0 for all)", value=0, minimum=0, step=1)
api_url = gr.Textbox(label="GAIA API URL", value=DEFAULT_API_URL)
run_button = gr.Button("Run Benchmark and Submit", variant="primary")
with gr.Accordion("Results", open=False):
status_output = gr.Textbox(label="Submission Status", lines=5)
results_dataframe = gr.DataFrame(label="Detailed Results")
run_button.click(
fn=run_and_submit_all,
inputs=[username, agent_code, api_url, level, max_questions],
outputs=[status_output, results_dataframe]
)
logger.info("Gradio interface created.")
return demo
# --- Main Execution ---
if __name__ == "__main__":
if not AGENT_WORKFLOW:
print("ERROR: Agent Workflow failed to initialize. Cannot start Gradio app.")
print("Please check logs for initialization errors (e.g., missing API keys, import issues).")
else:
gradio_app = create_gradio_interface()
# Launch Gradio app
# Share=True creates a public link (use with caution)
# Set server_name="0.0.0.0" to allow access from network
gradio_app.launch(server_name="0.0.0.0", server_port=7860)
|