File size: 14,712 Bytes
a23082c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8f6b7f
a23082c
 
b8f6b7f
a23082c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8f6b7f
 
091c996
b8f6b7f
a23082c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114747f
a23082c
 
 
 
 
 
 
 
 
 
12be796
a23082c
 
 
 
 
4c353e9
 
 
 
 
 
 
 
 
 
 
554a563
4c353e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8f6b7f
a23082c
 
 
 
114747f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c353e9
 
 
a23082c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import logging

from llama_index.core.agent.workflow import CodeActAgent, ReActAgent
from llama_index.core.tools import FunctionTool
from llama_index.llms.google_genai import GoogleGenAI
from llama_index.llms.openai import OpenAI
from llama_index.tools.code_interpreter import CodeInterpreterToolSpec

# Setup logging
logger = logging.getLogger(__name__)

# Helper function to load prompt from file
def load_prompt_from_file(filename: str, default_prompt: str) -> str:
    """Loads a prompt from a text file."""
    try:
        # Assuming the prompt file is in the same directory as the agent script
        script_dir = os.path.dirname(__file__)
        prompt_path = os.path.join(script_dir, filename)
        with open(prompt_path, "r") as f:
            prompt = f.read()
            logger.info(f"Successfully loaded prompt from {prompt_path}")
            return prompt
    except FileNotFoundError:
        logger.warning(f"Prompt file {filename} not found at {prompt_path}. Using default.")
        return default_prompt
    except Exception as e:
        logger.error(f"Error loading prompt file {filename}: {e}", exc_info=True)
        return default_prompt

def generate_python_code(prompt: str) -> str:
    """
    Generate valid Python code from a natural language description using a configured LLM.
    Args:
        prompt (str): A clear description of the desired Python code functionality.
    Returns:
        str: A string containing the generated Python code.
    Raises:
        ValueError: If required API key is not set.
        Exception: If the LLM call fails.
    """
    logger.info(f"Generating Python code for prompt: {prompt[:100]}...")
    
    # Configuration for code generation LLM
    gen_llm_model = os.getenv("CODE_GEN_LLM_MODEL", "o4-mini")
    gen_api_key = os.getenv("OPENAI_API_KEY")

    if not gen_api_key:
        raise ValueError("OPENAI_API_KEY environment variable is not set.")

    # Load the prompt template
    default_gen_prompt_template = ("You are a helpful assistant that writes Python code. "
                                   "You will be given a prompt and you must generate Python code based on that prompt. "
                                   "You must only generate Python code and nothing else. "
                                   "Do not include any explanations or any other text. "
                                   "Do not use any markdown. \n"
                                   "Prompt: {prompt} \n"
                                   "Code:\n")
    gen_prompt_template = load_prompt_from_file("../prompts/code_gen_prompt.txt", default_gen_prompt_template)
    input_prompt = gen_prompt_template.format(prompt=prompt)

    try:
        llm = OpenAI(
            model=gen_llm_model,
            api_key=gen_api_key,
            reasoning_effort="high",
            temperature=0.1,
            max_tokens=16384
        )
        logger.info(f"Using code generation LLM: {gen_llm_model}")
        generated_code = llm.complete(input_prompt)
        logger.info("Code generation successful.")
        return generated_code.text
    except Exception as e:
        logger.error(f"LLM call failed during code generation: {e}", exc_info=True)
        raise # Re-raise the exception to be handled by the agent/workflow

# --- Tool Definitions ---

python_code_generator_tool = FunctionTool.from_defaults(
    fn=generate_python_code,
    name="python_code_generator",
    description=(
        "Generates executable Python code based on a natural language prompt. "
        "Input: prompt string. Output: Python code string."
    ),
)

# Use LlamaIndex's built-in Code Interpreter Tool Spec for safe execution
# This assumes the necessary environment (e.g., docker) for the spec is available
try:
    code_interpreter_spec = CodeInterpreterToolSpec()
    # Get the tool(s) from the spec. It might return multiple tools.
    code_interpreter_tools = code_interpreter_spec.to_tool_list()
    if not code_interpreter_tools:
        raise RuntimeError("CodeInterpreterToolSpec did not return any tools.")
    # Assuming the primary tool is the first one, or find by name if necessary
    code_interpreter_tool = next((t for t in code_interpreter_tools if t.metadata.name == "code_interpreter"), None)
    if code_interpreter_tool is None:
         raise RuntimeError("Could not find 'code_interpreter' tool in CodeInterpreterToolSpec results.")
    logger.info("CodeInterpreterToolSpec initialized successfully.")
except Exception as e:
    logger.error(f"Failed to initialize CodeInterpreterToolSpec: {e}", exc_info=True)
    # Fallback: Define a dummy tool or raise error to prevent agent start?
    # For now, let initialization fail if the safe interpreter isn't available.
    raise RuntimeError("CodeInterpreterToolSpec failed to initialize. Cannot create code_agent.") from e

# --- REMOVED SimpleCodeExecutor --- 
# The SimpleCodeExecutor class that used subprocess has been entirely removed 
# due to severe security risks. Execution MUST go through the CodeInterpreterToolSpec.

# --- Agent Initialization ---

def initialize_code_agent() -> ReActAgent:
    """Initializes the CodeActAgent, configured for safe code execution."""
    logger.info("Initializing CodeAgent...")

    # Configuration for the agent's main LLM
    agent_llm_model = os.getenv("CODE_AGENT_LLM_MODEL", "gemini-2.5-pro-preview-03-25")
    gemini_api_key = os.getenv("GEMINI_API_KEY")

    if not gemini_api_key:
        logger.error("GEMINI_API_KEY not found in environment variables for CodeAgent.")
        raise ValueError("GEMINI_API_KEY must be set for CodeAgent")

    try:
        llm = GoogleGenAI(
            api_key=gemini_api_key,
            model=agent_llm_model,
            temperature=0.10
        )
        logger.info(f"Using agent LLM: {agent_llm_model}")

        # Load system prompt (consider loading from file)
        default_system_prompt = """\
            You are CodeAgent, a specialist in generating and executing Python code. Your mission:
            
            1. **Thought**: Think step-by-step before acting and state your reasoning.
            2. **Code Generation**: To produce code, call `python_code_generator` with a concise, unambiguous prompt. Review the generated code for correctness and safety.
            3. **Execution & Testing**: To execute or test code, call `code_interpreter`. Provide the complete code snippet. Analyze its output (stdout, stderr, result) to verify functionality and debug errors.
            4. **Iteration**: If execution fails or the result is incorrect, analyze the error, think about the fix, generate corrected code using `python_code_generator`, and execute again using `code_interpreter`.
            5. **Tool Use**: Always adhere strictly to each tool’s input/output format.
            6. **Final Output**: Once the code works correctly and achieves the goal, output *only* the final functional code or the final execution result, as appropriate for the task.
            7. **Hand-Off**: If further logical reasoning or verification is needed, delegate to **reasoning_agent**. Otherwise, pass your final output to **planner_agent** for synthesis.
            
            **Special Instructions for Chess-Related Tasks**:
            - Prioritize using the Stockfish engine to solve chess problems. Ubuntu installation: `sudo apt-get install stockfish` so path is `/usr/games/stockfish`
            - Use `python-chess` to represent boards, generate and validate moves, and parse PGN/FEN.
            
            **Available Python Packages**:
            
            - beautifulsoup4: HTML/XML parsing and lightweight web scraping  
            - certifi: Mozilla CA bundle for secure TLS/SSL requests  
            - datasets: Hugging Face dataset loading and streaming  
            - duckdb: In‑process OLAP SQL engine (analytics, Parquet, Arrow)  
            - ffmpeg-python: Wrapper around FFmpeg for audio/video operations  
            - gradio[oauth]: Rapid web‑UI prototyping with optional OAuth  
            - helium: High‑level Selenium / browser automation toolkit  
            - huggingface: Interact with Hugging Face Hub models, datasets, spaces  
            - imageio: Read and write images, GIFs, MP4s, volumes, etc.  
            - matplotlib: 2‑D plotting (figures, axes, annotations)  
            - numpy: N‑dimensional arrays and vectorized math  
            - openai-whisper: Speech‑to‑text transcription  
            - opencv-python: Computer vision, image/video processing  
            - openpyxl: Excel .xlsx read/write, styles, formulas  
            - pandas: DataFrames, time series, CSV/Parquet I/O  
            - pyarrow: Apache Arrow tables, Parquet, Flight RPC  
            - pygame: Simple 2‑D game/graphics engine (SDL based)  
            - python-chess: Chess move generation, PGN/FEN handling, engine UCI integration  
            - requests: HTTP/HTTPS client with sessions and retries  
            - scikit-learn: Machine‑learning algorithms, preprocessing, pipelines  
            - scipy: Scientific computing, optimization, signal processing  
            - seaborn: Statistical visualization on top of matplotlib  
            - sqlalchemy: SQL ORM and core engine for many databases  
            - statsmodels: Econometrics and statistical modeling (GLM, ARIMA)  
            - stockfish: UCI interface to Stockfish chess engine  
            - sympy: Symbolic math, algebra, calculus CAS  
            - youtube-transcript-api: Fetch YouTube video transcripts via API  
            - yt-dlp: Download videos/playlists from YouTube and other sites  
            """

        system_prompt = load_prompt_from_file("code_agent_system_prompt.txt", default_system_prompt)

        agent = ReActAgent(
            name="code_agent",
            description=(
                "Generates Python code using `python_code_generator` and executes it safely with "
                "`code_interpreter`, then iteratively debugs and refines the code from run-time feedback.\n\n"
                "The agent can leverage the following pre-installed packages:\n"
                "- beautifulsoup4>=4.13.4 : HTML/XML parsing and lightweight web scraping\n"
                "- certifi>=2025.4.26     : Mozilla CA bundle for secure TLS/SSL requests\n"
                "- datasets>=3.5.1        : Hugging Face dataset loading and streaming\n"
                "- duckdb>=1.2.2          : In‑process OLAP SQL engine (analytics, Parquet, Arrow)\n"
                "- ffmpeg-python>=0.2.0   : Wrapper around FFmpeg for audio/video operations\n"
                "- gradio[oauth]>=5.28.0  : Rapid web‑UI prototyping with optional OAuth\n"
                "- helium>=5.1.1          : High‑level Selenium / browser automation toolkit\n"
                "- huggingface>=0.0.1     : Interact with Hugging Face Hub models, datasets, spaces\n"
                "- imageio>=2.37.0        : Read and write images, GIFs, MP4s, volumes, etc.\n"
                "- matplotlib>=3.10.1     : 2‑D plotting (figures, axes, annotations)\n"
                "- numpy>=2.2.5           : N‑dimensional arrays and vectorized math\n"
                "- openai-whisper>=20240930 : Speech‑to‑text transcription\n"
                "- opencv-python>=4.11.0.86 : Computer vision, image/video processing\n"
                "- openpyxl>=3.1.5        : Excel .xlsx read/write, styles, formulas\n"
                "- pandas>=2.2.3          : DataFrames, time series, CSV/Parquet I/O\n"
                "- pyarrow>=20.0.0        : Apache Arrow tables, Parquet, Flight RPC\n"
                "- pygame>=2.6.1          : Simple 2‑D game/graphics engine (SDL based)\n"
                "- python-chess>=1.999    : Chess move generation, PGN/FEN handling, engines\n"
                "- requests>=2.32.3       : HTTP/HTTPS client with sessions and retries\n"
                "- scikit-learn>=1.6.1    : Machine‑learning algorithms, preprocessing, pipelines\n"
                "- scipy>=1.15.2          : Scientific computing, optimization, signal processing\n"
                "- seaborn>=0.13.2        : Statistical visualization on top of matplotlib\n"
                "- sqlalchemy>=2.0.40     : SQL ORM and core engine for many databases\n"
                "- statsmodels>=0.14.4    : Econometrics and statistical modeling (GLM, ARIMA)\n"
                "- stockfish==3.28.0      : UCI interface to Stockfish chess engine\n"
                "- sympy>=1.14.0          : Symbolic math, algebra, calculus CAS\n"
                "- youtube-transcript-api>=1.0.3 : Fetch YouTube video transcripts via API\n"
                "- yt-dlp>=2025.3.31      : Download videos/playlists from YouTube and other sites\n\n"
                "Additionally, the `stockfish` package enables the agent to solve chess problems by analyzing positions, "
                "identifying tactical motifs, and calculating optimal move sequences, making it a valuable tool for chess training and analysis."
            ),
            # REMOVED: code_execute_fn - Execution is handled by the code_interpreter tool via the agent loop.
            tools=[
                python_code_generator_tool,
                code_interpreter_tool, # Use the safe tool from the spec
            ],
            llm=llm,
            system_prompt=system_prompt,
            can_handoff_to=["planner_agent", "reasoning_agent"],
        )
        logger.info("CodeAgent initialized successfully.")

        return agent

    except Exception as e:
        logger.error(f"Error during CodeAgent initialization: {e}", exc_info=True)
        raise

# Example usage (for testing if run directly)
if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    logger.info("Running code_agent.py directly for testing...")

    # Ensure API keys are set for testing
    required_keys = ["GEMINI_API_KEY", os.getenv("CODE_GEN_API_KEY_ENV", "ALPAFLOW_OPENAI_API_KEY")]
    missing_keys = [key for key in required_keys if not os.getenv(key)]
    if missing_keys:
        print(f"Error: Required environment variable(s) not set: {', '.join(missing_keys)}. Cannot run test.")
    else:
        try:
            test_agent = initialize_code_agent()
            print("Code Agent initialized successfully for testing.")
            # Example test (requires user interaction or pre-defined task)
            # result = test_agent.chat("Write and execute python code to print 'hello world'")
            # print(f"Test query result: {result}")
        except Exception as e:
            print(f"Error during testing: {e}")