Spaces:
Running
Running
File size: 14,712 Bytes
a23082c b8f6b7f a23082c b8f6b7f a23082c b8f6b7f 091c996 b8f6b7f a23082c 114747f a23082c 12be796 a23082c 4c353e9 554a563 4c353e9 b8f6b7f a23082c 114747f 4c353e9 a23082c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import logging
from llama_index.core.agent.workflow import CodeActAgent, ReActAgent
from llama_index.core.tools import FunctionTool
from llama_index.llms.google_genai import GoogleGenAI
from llama_index.llms.openai import OpenAI
from llama_index.tools.code_interpreter import CodeInterpreterToolSpec
# Setup logging
logger = logging.getLogger(__name__)
# Helper function to load prompt from file
def load_prompt_from_file(filename: str, default_prompt: str) -> str:
"""Loads a prompt from a text file."""
try:
# Assuming the prompt file is in the same directory as the agent script
script_dir = os.path.dirname(__file__)
prompt_path = os.path.join(script_dir, filename)
with open(prompt_path, "r") as f:
prompt = f.read()
logger.info(f"Successfully loaded prompt from {prompt_path}")
return prompt
except FileNotFoundError:
logger.warning(f"Prompt file {filename} not found at {prompt_path}. Using default.")
return default_prompt
except Exception as e:
logger.error(f"Error loading prompt file {filename}: {e}", exc_info=True)
return default_prompt
def generate_python_code(prompt: str) -> str:
"""
Generate valid Python code from a natural language description using a configured LLM.
Args:
prompt (str): A clear description of the desired Python code functionality.
Returns:
str: A string containing the generated Python code.
Raises:
ValueError: If required API key is not set.
Exception: If the LLM call fails.
"""
logger.info(f"Generating Python code for prompt: {prompt[:100]}...")
# Configuration for code generation LLM
gen_llm_model = os.getenv("CODE_GEN_LLM_MODEL", "o4-mini")
gen_api_key = os.getenv("OPENAI_API_KEY")
if not gen_api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set.")
# Load the prompt template
default_gen_prompt_template = ("You are a helpful assistant that writes Python code. "
"You will be given a prompt and you must generate Python code based on that prompt. "
"You must only generate Python code and nothing else. "
"Do not include any explanations or any other text. "
"Do not use any markdown. \n"
"Prompt: {prompt} \n"
"Code:\n")
gen_prompt_template = load_prompt_from_file("../prompts/code_gen_prompt.txt", default_gen_prompt_template)
input_prompt = gen_prompt_template.format(prompt=prompt)
try:
llm = OpenAI(
model=gen_llm_model,
api_key=gen_api_key,
reasoning_effort="high",
temperature=0.1,
max_tokens=16384
)
logger.info(f"Using code generation LLM: {gen_llm_model}")
generated_code = llm.complete(input_prompt)
logger.info("Code generation successful.")
return generated_code.text
except Exception as e:
logger.error(f"LLM call failed during code generation: {e}", exc_info=True)
raise # Re-raise the exception to be handled by the agent/workflow
# --- Tool Definitions ---
python_code_generator_tool = FunctionTool.from_defaults(
fn=generate_python_code,
name="python_code_generator",
description=(
"Generates executable Python code based on a natural language prompt. "
"Input: prompt string. Output: Python code string."
),
)
# Use LlamaIndex's built-in Code Interpreter Tool Spec for safe execution
# This assumes the necessary environment (e.g., docker) for the spec is available
try:
code_interpreter_spec = CodeInterpreterToolSpec()
# Get the tool(s) from the spec. It might return multiple tools.
code_interpreter_tools = code_interpreter_spec.to_tool_list()
if not code_interpreter_tools:
raise RuntimeError("CodeInterpreterToolSpec did not return any tools.")
# Assuming the primary tool is the first one, or find by name if necessary
code_interpreter_tool = next((t for t in code_interpreter_tools if t.metadata.name == "code_interpreter"), None)
if code_interpreter_tool is None:
raise RuntimeError("Could not find 'code_interpreter' tool in CodeInterpreterToolSpec results.")
logger.info("CodeInterpreterToolSpec initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize CodeInterpreterToolSpec: {e}", exc_info=True)
# Fallback: Define a dummy tool or raise error to prevent agent start?
# For now, let initialization fail if the safe interpreter isn't available.
raise RuntimeError("CodeInterpreterToolSpec failed to initialize. Cannot create code_agent.") from e
# --- REMOVED SimpleCodeExecutor ---
# The SimpleCodeExecutor class that used subprocess has been entirely removed
# due to severe security risks. Execution MUST go through the CodeInterpreterToolSpec.
# --- Agent Initialization ---
def initialize_code_agent() -> ReActAgent:
"""Initializes the CodeActAgent, configured for safe code execution."""
logger.info("Initializing CodeAgent...")
# Configuration for the agent's main LLM
agent_llm_model = os.getenv("CODE_AGENT_LLM_MODEL", "gemini-2.5-pro-preview-03-25")
gemini_api_key = os.getenv("GEMINI_API_KEY")
if not gemini_api_key:
logger.error("GEMINI_API_KEY not found in environment variables for CodeAgent.")
raise ValueError("GEMINI_API_KEY must be set for CodeAgent")
try:
llm = GoogleGenAI(
api_key=gemini_api_key,
model=agent_llm_model,
temperature=0.10
)
logger.info(f"Using agent LLM: {agent_llm_model}")
# Load system prompt (consider loading from file)
default_system_prompt = """\
You are CodeAgent, a specialist in generating and executing Python code. Your mission:
1. **Thought**: Think step-by-step before acting and state your reasoning.
2. **Code Generation**: To produce code, call `python_code_generator` with a concise, unambiguous prompt. Review the generated code for correctness and safety.
3. **Execution & Testing**: To execute or test code, call `code_interpreter`. Provide the complete code snippet. Analyze its output (stdout, stderr, result) to verify functionality and debug errors.
4. **Iteration**: If execution fails or the result is incorrect, analyze the error, think about the fix, generate corrected code using `python_code_generator`, and execute again using `code_interpreter`.
5. **Tool Use**: Always adhere strictly to each tool’s input/output format.
6. **Final Output**: Once the code works correctly and achieves the goal, output *only* the final functional code or the final execution result, as appropriate for the task.
7. **Hand-Off**: If further logical reasoning or verification is needed, delegate to **reasoning_agent**. Otherwise, pass your final output to **planner_agent** for synthesis.
**Special Instructions for Chess-Related Tasks**:
- Prioritize using the Stockfish engine to solve chess problems. Ubuntu installation: `sudo apt-get install stockfish` so path is `/usr/games/stockfish`
- Use `python-chess` to represent boards, generate and validate moves, and parse PGN/FEN.
**Available Python Packages**:
- beautifulsoup4: HTML/XML parsing and lightweight web scraping
- certifi: Mozilla CA bundle for secure TLS/SSL requests
- datasets: Hugging Face dataset loading and streaming
- duckdb: In‑process OLAP SQL engine (analytics, Parquet, Arrow)
- ffmpeg-python: Wrapper around FFmpeg for audio/video operations
- gradio[oauth]: Rapid web‑UI prototyping with optional OAuth
- helium: High‑level Selenium / browser automation toolkit
- huggingface: Interact with Hugging Face Hub models, datasets, spaces
- imageio: Read and write images, GIFs, MP4s, volumes, etc.
- matplotlib: 2‑D plotting (figures, axes, annotations)
- numpy: N‑dimensional arrays and vectorized math
- openai-whisper: Speech‑to‑text transcription
- opencv-python: Computer vision, image/video processing
- openpyxl: Excel .xlsx read/write, styles, formulas
- pandas: DataFrames, time series, CSV/Parquet I/O
- pyarrow: Apache Arrow tables, Parquet, Flight RPC
- pygame: Simple 2‑D game/graphics engine (SDL based)
- python-chess: Chess move generation, PGN/FEN handling, engine UCI integration
- requests: HTTP/HTTPS client with sessions and retries
- scikit-learn: Machine‑learning algorithms, preprocessing, pipelines
- scipy: Scientific computing, optimization, signal processing
- seaborn: Statistical visualization on top of matplotlib
- sqlalchemy: SQL ORM and core engine for many databases
- statsmodels: Econometrics and statistical modeling (GLM, ARIMA)
- stockfish: UCI interface to Stockfish chess engine
- sympy: Symbolic math, algebra, calculus CAS
- youtube-transcript-api: Fetch YouTube video transcripts via API
- yt-dlp: Download videos/playlists from YouTube and other sites
"""
system_prompt = load_prompt_from_file("code_agent_system_prompt.txt", default_system_prompt)
agent = ReActAgent(
name="code_agent",
description=(
"Generates Python code using `python_code_generator` and executes it safely with "
"`code_interpreter`, then iteratively debugs and refines the code from run-time feedback.\n\n"
"The agent can leverage the following pre-installed packages:\n"
"- beautifulsoup4>=4.13.4 : HTML/XML parsing and lightweight web scraping\n"
"- certifi>=2025.4.26 : Mozilla CA bundle for secure TLS/SSL requests\n"
"- datasets>=3.5.1 : Hugging Face dataset loading and streaming\n"
"- duckdb>=1.2.2 : In‑process OLAP SQL engine (analytics, Parquet, Arrow)\n"
"- ffmpeg-python>=0.2.0 : Wrapper around FFmpeg for audio/video operations\n"
"- gradio[oauth]>=5.28.0 : Rapid web‑UI prototyping with optional OAuth\n"
"- helium>=5.1.1 : High‑level Selenium / browser automation toolkit\n"
"- huggingface>=0.0.1 : Interact with Hugging Face Hub models, datasets, spaces\n"
"- imageio>=2.37.0 : Read and write images, GIFs, MP4s, volumes, etc.\n"
"- matplotlib>=3.10.1 : 2‑D plotting (figures, axes, annotations)\n"
"- numpy>=2.2.5 : N‑dimensional arrays and vectorized math\n"
"- openai-whisper>=20240930 : Speech‑to‑text transcription\n"
"- opencv-python>=4.11.0.86 : Computer vision, image/video processing\n"
"- openpyxl>=3.1.5 : Excel .xlsx read/write, styles, formulas\n"
"- pandas>=2.2.3 : DataFrames, time series, CSV/Parquet I/O\n"
"- pyarrow>=20.0.0 : Apache Arrow tables, Parquet, Flight RPC\n"
"- pygame>=2.6.1 : Simple 2‑D game/graphics engine (SDL based)\n"
"- python-chess>=1.999 : Chess move generation, PGN/FEN handling, engines\n"
"- requests>=2.32.3 : HTTP/HTTPS client with sessions and retries\n"
"- scikit-learn>=1.6.1 : Machine‑learning algorithms, preprocessing, pipelines\n"
"- scipy>=1.15.2 : Scientific computing, optimization, signal processing\n"
"- seaborn>=0.13.2 : Statistical visualization on top of matplotlib\n"
"- sqlalchemy>=2.0.40 : SQL ORM and core engine for many databases\n"
"- statsmodels>=0.14.4 : Econometrics and statistical modeling (GLM, ARIMA)\n"
"- stockfish==3.28.0 : UCI interface to Stockfish chess engine\n"
"- sympy>=1.14.0 : Symbolic math, algebra, calculus CAS\n"
"- youtube-transcript-api>=1.0.3 : Fetch YouTube video transcripts via API\n"
"- yt-dlp>=2025.3.31 : Download videos/playlists from YouTube and other sites\n\n"
"Additionally, the `stockfish` package enables the agent to solve chess problems by analyzing positions, "
"identifying tactical motifs, and calculating optimal move sequences, making it a valuable tool for chess training and analysis."
),
# REMOVED: code_execute_fn - Execution is handled by the code_interpreter tool via the agent loop.
tools=[
python_code_generator_tool,
code_interpreter_tool, # Use the safe tool from the spec
],
llm=llm,
system_prompt=system_prompt,
can_handoff_to=["planner_agent", "reasoning_agent"],
)
logger.info("CodeAgent initialized successfully.")
return agent
except Exception as e:
logger.error(f"Error during CodeAgent initialization: {e}", exc_info=True)
raise
# Example usage (for testing if run directly)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger.info("Running code_agent.py directly for testing...")
# Ensure API keys are set for testing
required_keys = ["GEMINI_API_KEY", os.getenv("CODE_GEN_API_KEY_ENV", "ALPAFLOW_OPENAI_API_KEY")]
missing_keys = [key for key in required_keys if not os.getenv(key)]
if missing_keys:
print(f"Error: Required environment variable(s) not set: {', '.join(missing_keys)}. Cannot run test.")
else:
try:
test_agent = initialize_code_agent()
print("Code Agent initialized successfully for testing.")
# Example test (requires user interaction or pre-defined task)
# result = test_agent.chat("Write and execute python code to print 'hello world'")
# print(f"Test query result: {result}")
except Exception as e:
print(f"Error during testing: {e}")
|