Spaces:
Sleeping
Sleeping
import groundingdino.datasets.transforms as T | |
import torch | |
import numpy as np | |
from groundingdino.models import build_model | |
from groundingdino.util import box_ops | |
from groundingdino.util.inference import predict | |
from groundingdino.util.slconfig import SLConfig | |
from groundingdino.util.utils import clean_state_dict | |
from torchvision.transforms import ToTensor | |
from huggingface_hub import hf_hub_download | |
import time | |
def load_model_hugging_face(repo_id, filename, ckpt_config_filename, device='cpu'): | |
cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename) | |
args = SLConfig.fromfile(cache_config_file) | |
model = build_model(args) | |
args.device = device | |
cache_file = hf_hub_download(repo_id=repo_id, filename=filename) | |
checkpoint = torch.load(cache_file, map_location='cpu') | |
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) | |
print(f"Model loaded from {cache_file} \n => {log}") | |
model.eval() | |
return model | |
class LangEfficientSAM: | |
def __init__(self, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")): | |
self.device = device | |
print("Device:", self.device) | |
if self.device == torch.device("cpu"): | |
self.sam_efficient = torch.jit.load('./models/efficientsam_s_cpu.jit') | |
else: | |
self.sam_efficient = torch.jit.load('./models/efficientsam_s_gpu.jit') | |
ckpt_repo_id = "ShilongLiu/GroundingDINO" | |
ckpt_filename = "groundingdino_swinb_cogcoor.pth" | |
ckpt_config_filename = "GroundingDINO_SwinB.cfg.py" | |
self.groundingdino = load_model_hugging_face(ckpt_repo_id, | |
ckpt_filename, | |
ckpt_config_filename, | |
self.device) | |
def predict_dino(self, image_pil, text_prompt, box_threshold, text_threshold): | |
start = time.time() | |
transform = T.Compose([ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
image_transformed, _ = transform(image_pil, None) | |
boxes, logits, phrases = predict(model=self.groundingdino, | |
image=image_transformed, | |
caption=text_prompt, | |
box_threshold=box_threshold, | |
text_threshold=text_threshold, | |
device=self.device) | |
W, H = image_pil.size | |
boxes = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H]) | |
# print("DINO time: ", time.time() - start) | |
return boxes, logits, phrases | |
def predict_sam(self, image, box): | |
start = time.time() | |
img_tensor = ToTensor()(image).to(device=self.device) | |
bbox = torch.reshape(box.clone().detach(), [1, 1, 2, 2]).to(device=self.device) | |
bbox_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2]).to(device=self.device) | |
predicted_logits, predicted_iou = self.sam_efficient( | |
img_tensor[None, ...], | |
bbox, | |
bbox_labels, | |
) | |
predicted_logits = predicted_logits.cpu() | |
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy() | |
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy() | |
max_predicted_iou = -1 | |
selected_mask_using_predicted_iou = None | |
for m in range(all_masks.shape[0]): | |
curr_predicted_iou = predicted_iou[m] | |
if ( | |
curr_predicted_iou > max_predicted_iou | |
or selected_mask_using_predicted_iou is None | |
): | |
max_predicted_iou = curr_predicted_iou | |
selected_mask_using_predicted_iou = all_masks[m] | |
# print("SAM time: ", time.time() - start) | |
return selected_mask_using_predicted_iou | |
def predict(self, image_pil, text_prompt, box_threshold=0.3, text_threshold=0.25): | |
boxes, logits, phrases = self.predict_dino(image_pil, text_prompt, box_threshold, text_threshold) | |
# masks = torch.tensor([]) | |
masks = [] | |
if len(boxes) > 0: | |
for box in boxes: | |
mask = self.predict_sam(image_pil, box) | |
masks.append(mask) | |
masks = np.array(masks) | |
masks = torch.from_numpy(masks) | |
return masks, boxes, phrases, logits | |