File size: 4,615 Bytes
531f528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import warnings
import torch
import gc
from transformers import AutoModelForVision2Seq, AutoProcessor
from peft import PeftModel
from PIL import Image
import gradio as gr
from huggingface_hub import login

# Basic settings
warnings.filterwarnings('ignore')
os.environ["CUDA_VISIBLE_DEVICES"] = ""  # ปิดการใช้ CUDA

# Global variables
model = None
processor = None

# Login to Hugging Face Hub
if 'HUGGING_FACE_HUB_TOKEN' in os.environ:
   print("กำลังเข้าสู่ระบบ Hugging Face Hub...")
   login(token=os.environ['HUGGING_FACE_HUB_TOKEN'])
else:
   print("คำเตือน: ไม่พบ HUGGING_FACE_HUB_TOKEN")

def load_model_and_processor():
   """โหลดโมเดลและ processor"""
   global model, processor
   print("กำลังโหลดโมเดลและ processor...")
   try:
       # Model paths
       base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
       adapter_path = "Aekanun/thai-handwriting-llm"

       # Load processor from base model
       print("กำลังโหลด processor...")
       processor = AutoProcessor.from_pretrained(base_model_path, use_auth_token=True)

       # Load base model
       print("กำลังโหลด base model...")
       base_model = AutoModelForVision2Seq.from_pretrained(
           base_model_path,
           device_map={"": "cpu"},  # ใช้ CPU
           torch_dtype=torch.float32,  # ใช้ float32 แทน bfloat16
           trust_remote_code=True,
           use_auth_token=True
       )

       # Load adapter
       print("กำลังโหลด adapter...")
       model = PeftModel.from_pretrained(
           base_model,
           adapter_path,
           torch_dtype=torch.float32,  # ใช้ float32
           device_map={"": "cpu"},  # ใช้ CPU
           use_auth_token=True
       )
       
       print("โหลดโมเดลสำเร็จ!")
       return True
   except Exception as e:
       print(f"เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}")
       return False

def process_handwriting(image):
   """ฟังก์ชันสำหรับ Gradio interface"""
   global model, processor
   
   if image is None:
       return "กรุณาอัพโหลดรูปภาพ"
   
   try:
       # Ensure image is in PIL format
       if not isinstance(image, Image.Image):
           image = Image.fromarray(image)
       
       # Create prompt
       prompt = """Transcribe the Thai handwritten text from the provided image.
Only return the transcription in Thai language."""
       
       # Create model inputs
       messages = [
           {
               "role": "user",
               "content": [
                   {"type": "text", "text": prompt},
                   {"type": "image", "image": image}
               ],
           }
       ]
       
       # Process with model
       text = processor.apply_chat_template(messages, tokenize=False)
       inputs = processor(text=text, images=image, return_tensors="pt")
       
       # Move inputs to CPU
       inputs = {k: v.to('cpu') for k, v in inputs.items()}
       
       # Generate
       with torch.no_grad():
           outputs = model.generate(
               **inputs,
               max_new_tokens=256,
               do_sample=False,
               pad_token_id=processor.tokenizer.pad_token_id
           )
       
       # Decode output
       transcription = processor.decode(outputs[0], skip_special_tokens=True)
       return transcription.strip()
   except Exception as e:
       return f"เกิดข้อผิดพลาด: {str(e)}"

# Initialize application
print("กำลังเริ่มต้นแอปพลิเคชัน...")
if load_model_and_processor():
   # Create Gradio interface
   demo = gr.Interface(
       fn=process_handwriting,
       inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
       outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
       title="Thai Handwriting Recognition",
       description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ",
       examples=[["example1.jpg"], ["example2.jpg"]]
   )
   
   if __name__ == "__main__":
       demo.launch()
else:
   print("ไม่สามารถเริ่มต้นแอปพลิเคชันได้")