Aekanun's picture
first
43d09a2
raw
history blame
3.67 kB
import gradio as gr
import torch
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
from PIL import Image
# Global variables for model and processor
model = None
processor = None
def load_model_and_processor():
global model, processor
model_path = "Aekanun/thai-handwriting-llm"
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
# BitsAndBytes config for 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
try:
# Load processor from base model
processor = AutoProcessor.from_pretrained(base_model_path)
# Load fine-tuned model
model = AutoModelForVision2Seq.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=bnb_config
)
return True
except Exception as e:
print(f"Error loading model: {str(e)}")
return False
def process_handwriting(image):
global model, processor
if image is None:
return "กรุณาอัพโหลดรูปภาพ"
try:
# Ensure image is in PIL format
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Prepare prompt and messages
prompt = """Transcribe the Thai handwritten text from the provided image.
Only return the transcription in Thai language."""
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image}
],
}
]
# Process input
text = processor.apply_chat_template(messages, tokenize=False)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Generate output
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=False,
pad_token_id=processor.tokenizer.pad_token_id
)
# Decode output
transcription = processor.decode(outputs[0], skip_special_tokens=True)
return transcription
except Exception as e:
return f"เกิดข้อผิดพลาด: {str(e)}"
# Load model when starting
print("กำลังโหลดโมเดล...")
model_loaded = load_model_and_processor()
if model_loaded:
# Create Gradio interface
demo = gr.Interface(
fn=process_handwriting,
inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
title="Thai Handwriting to Text ด้วย LLaMA Vision",
description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ โดยใช้โมเดล LLaMA Vision ที่ fine-tune มาสำหรับภาษาไทย",
examples=[["example1.jpg"], ["example2.jpg"]]
)
if __name__ == "__main__":
demo.launch(share=True)
else:
print("ไม่สามารถโหลดโมเดลได้ กรุณาตรวจสอบ log")