Spaces:
Sleeping
Sleeping
Create app1.py
Browse files
app1.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
from huggingface_hub import login
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
+
from quanto import quantize_model
|
8 |
+
|
9 |
+
# === [AUTHENTICATION] ===
|
10 |
+
hf_token = os.getenv("hf_token")
|
11 |
+
if hf_token is None:
|
12 |
+
raise ValueError("Please set HF_TOKEN environment variable with your Hugging Face token")
|
13 |
+
login(token=hf_token)
|
14 |
+
|
15 |
+
# === [TRANSLATOR] ===
|
16 |
+
translator = pipeline("translation", model="facebook/nllb-200-distilled-600M")
|
17 |
+
|
18 |
+
# === [LOAD & QUANTIZE MODEL] ===
|
19 |
+
model_name = "ContactDoctor/Bio-Medical-Llama-3-2-1B-CoT-012025"
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
+
|
22 |
+
print("Loading base model...")
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
model_name,
|
25 |
+
torch_dtype=torch.float16,
|
26 |
+
device_map="auto"
|
27 |
+
)
|
28 |
+
|
29 |
+
print("Quantizing model...")
|
30 |
+
quantized_model = quantize_model(model, bits=4)
|
31 |
+
|
32 |
+
print("Initializing pipeline...")
|
33 |
+
text_gen_pipeline = pipeline(
|
34 |
+
"text-generation",
|
35 |
+
model=quantized_model,
|
36 |
+
tokenizer=tokenizer,
|
37 |
+
torch_dtype=torch.float16,
|
38 |
+
device_map="auto"
|
39 |
+
)
|
40 |
+
|
41 |
+
# === [SYSTEM MESSAGE] ===
|
42 |
+
system_message = {
|
43 |
+
"role": "system",
|
44 |
+
"content": (
|
45 |
+
"You are a helpful, respectful, and knowledgeable medical assistant developed by the AI team at AfriAI Solutions, Senegal. "
|
46 |
+
"Provide brief, clear definitions when answering medical questions. After giving a concise response, ask the user if they would like more information about symptoms, causes, or treatments. "
|
47 |
+
"Always encourage users to consult healthcare professionals for personalized advice."
|
48 |
+
)
|
49 |
+
}
|
50 |
+
|
51 |
+
messages = [system_message]
|
52 |
+
max_history = 10
|
53 |
+
|
54 |
+
salutations = ["bonjour", "salut", "bonsoir", "coucou"]
|
55 |
+
remerciements = ["merci", "je vous remercie", "thanks"]
|
56 |
+
au_revoir = ["au revoir", "à bientôt", "bye", "bonne journée", "à la prochaine"]
|
57 |
+
|
58 |
+
def detect_smalltalk(user_input):
|
59 |
+
lower_input = user_input.lower().strip()
|
60 |
+
if any(phrase in lower_input for phrase in salutations):
|
61 |
+
return "Bonjour ! Comment puis-je vous aider aujourd'hui ?", True
|
62 |
+
if any(phrase in lower_input for phrase in remerciements):
|
63 |
+
return "Avec plaisir ! Souhaitez-vous poser une autre question médicale ?", True
|
64 |
+
if any(phrase in lower_input for phrase in au_revoir):
|
65 |
+
return "Au revoir ! Prenez soin de votre santé et n'hésitez pas à revenir si besoin.", True
|
66 |
+
return "", False
|
67 |
+
|
68 |
+
def medical_chatbot(user_input):
|
69 |
+
global messages
|
70 |
+
|
71 |
+
smalltalk_response, handled = detect_smalltalk(user_input)
|
72 |
+
if handled:
|
73 |
+
return smalltalk_response
|
74 |
+
|
75 |
+
translated = translator(user_input, src_lang="fra_Latn", tgt_lang="eng_Latn")[0]['translation_text']
|
76 |
+
|
77 |
+
messages.append({"role": "user", "content": translated})
|
78 |
+
if len(messages) > max_history * 2:
|
79 |
+
messages = [system_message] + messages[-max_history * 2:]
|
80 |
+
|
81 |
+
prompt = text_gen_pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
|
82 |
+
|
83 |
+
response = text_gen_pipeline(
|
84 |
+
prompt,
|
85 |
+
max_new_tokens=1024,
|
86 |
+
do_sample=True,
|
87 |
+
temperature=0.4,
|
88 |
+
top_k=150,
|
89 |
+
top_p=0.75,
|
90 |
+
eos_token_id=[
|
91 |
+
text_gen_pipeline.tokenizer.eos_token_id,
|
92 |
+
text_gen_pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
93 |
+
]
|
94 |
+
)
|
95 |
+
|
96 |
+
output = response[0]['generated_text'][len(prompt):].strip()
|
97 |
+
translated_back = translator(output, src_lang="eng_Latn", tgt_lang="fra_Latn")[0]['translation_text']
|
98 |
+
|
99 |
+
messages.append({"role": "assistant", "content": translated_back})
|
100 |
+
return translated_back
|
101 |
+
|
102 |
+
# === [LOGO LOAD] ===
|
103 |
+
logo = Image.open("AfriAI Solutions.jpg")
|
104 |
+
|
105 |
+
# === [GRADIO UI] ===
|
106 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
|
107 |
+
with gr.Row():
|
108 |
+
gr.Image(value=logo, show_label=False, show_download_button=False, interactive=False, height=150)
|
109 |
+
|
110 |
+
gr.Markdown("""
|
111 |
+
# 🤖 Chatbot Médical AfriAI Solutions
|
112 |
+
**Posez votre question médicale en français.**
|
113 |
+
Le chatbot vous répondra brièvement et avec bienveillance, puis vous demandera si vous souhaitez plus de détails.
|
114 |
+
""", elem_id="title")
|
115 |
+
|
116 |
+
chatbot = gr.Chatbot(label="Chat avec le Médecin Virtuel")
|
117 |
+
msg = gr.Textbox(label="Votre question", placeholder="Exemple : Quels sont les symptômes du paludisme ?")
|
118 |
+
clear = gr.Button("Effacer la conversation", variant="secondary")
|
119 |
+
|
120 |
+
def respond(message, history):
|
121 |
+
response = medical_chatbot(message)
|
122 |
+
history = history or []
|
123 |
+
history.append((message, response))
|
124 |
+
return "", history
|
125 |
+
|
126 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
127 |
+
clear.click(lambda: ("", []), None, [msg, chatbot])
|
128 |
+
|
129 |
+
demo.launch()
|