Spaces:
Build error
Build error
File size: 5,826 Bytes
01523b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
cnt_agents: &cnt_agents 2
max_turn: &max_turn 3
max_inner_turns: &max_inner_turns 3
prompts:
role_assigner_prepend_prompt: &role_assigner_prepend_prompt |-
role_assigner_append_prompt: &role_assigner_append_prompt |-
# Role Description
You are the leader of a group of experts, now you need to recruit a small group of experts with diverse identity to generate coherent and grammatically correct sentences containing the following given words:
${task_description}
You can recruit ${cnt_critic_agents} expert in different fields. What experts will you recruit?
# Response Format Guidance
You should respond with a list of expert description. For example:
1. an electrical engineer specified in the filed of xxx.
2. an economist who is good at xxx.
3. a lawyer with a good knowledge of xxx.
...
Only respond with the description of each role. Do not include your reason.
solver_prepend_prompt: &solver_prepend_prompt |-
You are ${role_description}. Generate a coherent and grammatically correct paragraph containing the following given words (or their variations):
WORDS:
${task_description}
solver_append_prompt: &solver_append_prompt |-
critic_prepend_prompt: &critic_prepend_prompt |-
You are in a discussion group, aiming to generate coherent and grammatically correct sentences containing the following given words (or their variations):
WORDS:
${task_description}
Below is the chat history in your group.
critic_append_prompt: &critic_append_prompt |-
You are ${role_description}. Based on your knowledge, can you check whether the latest provided paragraph contains all the given words or their variations? When responding, you should follow the following rules:
1. If the above latest provided solution has covered all the given words or their variations, end your response with a special token "[Agree]".
1. If not, double-check the above solutions, give your critics, and generate a better solution.
manager_prompt: &manager_prompt |-
executor_prepend_prompt: &executor_prepend_prompt |-
executor_append_prompt: &executor_append_prompt |-
evaluator_prepend_prompt: &evaluator_prepend_prompt |-
evaluator_append_prompt: &evaluator_append_prompt |-
You are a reviewer who checks whether a paragraph contains all the given words (including their variations). When some words are missing, you should patiently point out, and output a score of 0. When the paragraph contains all the words, you should output a score of 1.
WORDS:
${task_description}
SOLUTION:
```
${solution}
```
TEST RESULT:
${result}
RESPONSE FORMAT:
You must respond in the following format:
Score: (0 or 1. 0 if there are some missing words, 1 if there is no missing words)
Advice: (point out all the missing words)
name: pipeline
environment:
env_type: task-basic
max_turn: *max_turn
rule:
role_assigner:
type: role_description
cnt_agents: *cnt_agents
decision_maker:
type: vertical-solver-first
max_inner_turns: *max_inner_turns
executor:
type: coverage-test
evaluator:
type: basic
agents:
- #role_assigner_agent:
agent_type: role_assigner
name: role assigner
max_retry: 1000
prepend_prompt_template: *role_assigner_prepend_prompt
append_prompt_template: *role_assigner_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: "gpt-3.5-turbo"
temperature: 0
max_tokens: 512
output_parser:
type: role_assigner
- #solver_agent:
agent_type: solver
name: Planner
max_retry: 1000
max_history: 4
prepend_prompt_template: *solver_prepend_prompt
append_prompt_template: *solver_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: "gpt-3.5-turbo"
temperature: 0
max_tokens: 1024
output_parser:
type: commongen
# max_tokens: 1024
# stop:
# - "\ndef "
# - "\nclass "
# - "\nif "
# - "\n\n#"
- #critic_agents:
agent_type: critic
name: Critic 1
max_retry: 1000
max_history: 4
role_description: |-
Waiting to be assigned.
prepend_prompt_template: *critic_prepend_prompt
append_prompt_template: *critic_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: "gpt-3.5-turbo"
temperature: 0
max_tokens: 1024
output_parser:
type: mgsm-critic-agree
- #executor_agent:
agent_type: executor
name: Executor
max_retry: 1000
prepend_prompt_template: *executor_prepend_prompt
append_prompt_template: *executor_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: gpt-3.5-turbo
temperature: 0
max_tokens: 1024
output_parser:
type: commongen
- #evaluator_agent:
agent_type: evaluator
name: Evaluator
max_retry: 1000
role_description: |-
Evaluator
prepend_prompt_template: *evaluator_prepend_prompt
append_prompt_template: *evaluator_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: gpt-3.5-turbo
temperature: 0.3
max_tokens: 1024
output_parser:
type: humaneval-evaluator
dimensions:
- Score
- #manager_agent:
agent_type: manager
name: Manager
max_retry: 1000
prompt_template: *manager_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: "gpt-3.5-turbo"
temperature: 0
max_tokens: 1024
output_parser:
type: humaneval-manager |