|
import time
|
|
from io import BytesIO
|
|
import modal
|
|
from huggingface_hub import login
|
|
from fastapi import FastAPI, HTTPException
|
|
from pydantic import BaseModel
|
|
import base64
|
|
import sys
|
|
import requests
|
|
import os
|
|
from safetensors.torch import load_file
|
|
|
|
|
|
cuda_version = "12.4.0"
|
|
flavor = "devel"
|
|
operating_sys = "ubuntu22.04"
|
|
tag = f"{cuda_version}-{flavor}-{operating_sys}"
|
|
cuda_dev_image = modal.Image.from_registry(
|
|
f"nvidia/cuda:{tag}", add_python="3.11"
|
|
).entrypoint([])
|
|
|
|
diffusers_commit_sha = "81cf3b2f155f1de322079af28f625349ee21ec6b"
|
|
|
|
flux_image = (
|
|
cuda_dev_image.apt_install(
|
|
"git",
|
|
"libglib2.0-0",
|
|
"libsm6",
|
|
"libxrender1",
|
|
"libxext6",
|
|
"ffmpeg",
|
|
"libgl1",
|
|
)
|
|
.pip_install(
|
|
"invisible_watermark==0.2.0",
|
|
"peft==0.10.0",
|
|
"transformers==4.44.0",
|
|
"huggingface_hub[hf_transfer]==0.26.2",
|
|
"accelerate==0.33.0",
|
|
"safetensors==0.4.4",
|
|
"sentencepiece==0.2.0",
|
|
"torch==2.5.0",
|
|
f"git+https://github.com/huggingface/diffusers.git@{diffusers_commit_sha}",
|
|
"numpy<2",
|
|
"fastapi==0.104.1",
|
|
"uvicorn==0.24.0",
|
|
)
|
|
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HUB_CACHE": "/cache"})
|
|
)
|
|
|
|
flux_image = flux_image.env(
|
|
{
|
|
"TORCHINDUCTOR_CACHE_DIR": "/root/.inductor-cache",
|
|
"TORCHINDUCTOR_FX_GRAPH_CACHE": "1",
|
|
}
|
|
)
|
|
|
|
app = modal.App("flux-api-server", image=flux_image, secrets=[modal.Secret.from_name("huggingface-token")])
|
|
|
|
with flux_image.imports():
|
|
import torch
|
|
from diffusers import FluxPipeline
|
|
|
|
MINUTES = 60
|
|
VARIANT = "dev"
|
|
NUM_INFERENCE_STEPS = 50
|
|
|
|
class ImageRequest(BaseModel):
|
|
prompt: str
|
|
num_inference_steps: int = 50
|
|
width: int = 1024
|
|
height: int = 1024
|
|
|
|
class ImageResponse(BaseModel):
|
|
image_base64: str
|
|
generation_time: float
|
|
|
|
@app.cls(
|
|
gpu="H200",
|
|
scaledown_window=20 * MINUTES,
|
|
timeout=60 * MINUTES,
|
|
volumes={
|
|
"/cache": modal.Volume.from_name("hf-hub-cache", create_if_missing=True),
|
|
"/root/.nv": modal.Volume.from_name("nv-cache", create_if_missing=True),
|
|
"/root/.triton": modal.Volume.from_name("triton-cache", create_if_missing=True),
|
|
"/root/.inductor-cache": modal.Volume.from_name(
|
|
"inductor-cache", create_if_missing=True
|
|
),
|
|
},
|
|
)
|
|
class Model:
|
|
compile: bool = modal.parameter(default=False)
|
|
|
|
lora_loaded = False
|
|
lora_path = "/cache/flux.1_lora_flyway_doodle-poster.safetensors"
|
|
lora_url = "https://huggingface.co/RajputVansh/SG161222-DISTILLED-IITI-VANSH-RUHELA/resolve/main/flux.1_lora_flyway_doodle-poster.safetensors?download=true"
|
|
|
|
def download_lora_from_url(self, url, save_path):
|
|
"""Download LoRA with proper error handling"""
|
|
try:
|
|
print(f"π₯ Downloading LoRA from {url}")
|
|
response = requests.get(url, timeout=300)
|
|
response.raise_for_status()
|
|
|
|
with open(save_path, "wb") as f:
|
|
f.write(response.content)
|
|
|
|
print(f"β
LoRA downloaded successfully to {save_path}")
|
|
print(f"π File size: {len(response.content)} bytes")
|
|
return True
|
|
except Exception as e:
|
|
print(f"β LoRA download failed: {str(e)}")
|
|
return False
|
|
|
|
def verify_lora_file(self, lora_path):
|
|
"""Verify that the LoRA file is valid"""
|
|
try:
|
|
if not os.path.exists(lora_path):
|
|
return False, "File does not exist"
|
|
|
|
file_size = os.path.getsize(lora_path)
|
|
if file_size == 0:
|
|
return False, "File is empty"
|
|
|
|
|
|
try:
|
|
load_file(lora_path)
|
|
return True, f"Valid LoRA file ({file_size} bytes)"
|
|
except Exception as e:
|
|
return False, f"Invalid LoRA file: {str(e)}"
|
|
|
|
except Exception as e:
|
|
return False, f"Error verifying file: {str(e)}"
|
|
|
|
@modal.enter()
|
|
def enter(self):
|
|
from huggingface_hub import login
|
|
import os
|
|
|
|
|
|
token = os.environ["huggingface_token"]
|
|
login(token)
|
|
|
|
|
|
if not os.path.exists(self.lora_path):
|
|
print("π₯ LoRA not found, downloading...")
|
|
download_success = self.download_lora_from_url(self.lora_url, self.lora_path)
|
|
if not download_success:
|
|
print("β Failed to download LoRA, continuing without it")
|
|
self.lora_loaded = False
|
|
else:
|
|
print("π LoRA file found in cache")
|
|
|
|
|
|
is_valid, message = self.verify_lora_file(self.lora_path)
|
|
print(f"π LoRA verification: {message}")
|
|
|
|
|
|
from diffusers import FluxPipeline
|
|
import torch
|
|
|
|
print("π Loading Flux model...")
|
|
pipe = FluxPipeline.from_pretrained(
|
|
"black-forest-labs/FLUX.1-dev",
|
|
torch_dtype=torch.bfloat16
|
|
).to("cuda")
|
|
|
|
|
|
if is_valid:
|
|
try:
|
|
print(f"π Loading LoRA from {self.lora_path}")
|
|
pipe.load_lora_weights(self.lora_path)
|
|
print("β
LoRA successfully loaded!")
|
|
self.lora_loaded = True
|
|
|
|
|
|
print("π§ͺ Testing LoRA integration...")
|
|
|
|
|
|
except Exception as e:
|
|
print(f"β LoRA loading failed: {str(e)}")
|
|
self.lora_loaded = False
|
|
else:
|
|
print("β οΈ LoRA not loaded due to verification failure")
|
|
self.lora_loaded = False
|
|
|
|
|
|
self.pipe = optimize(pipe, compile=self.compile)
|
|
|
|
print(f"π― Model ready! LoRA status: {'β
Loaded' if self.lora_loaded else 'β Not loaded'}")
|
|
|
|
|
|
@modal.method()
|
|
def get_model_status(self) -> dict:
|
|
"""Get detailed model and LoRA status"""
|
|
lora_file_info = {}
|
|
if os.path.exists(self.lora_path):
|
|
try:
|
|
file_size = os.path.getsize(self.lora_path)
|
|
lora_file_info = {
|
|
"exists": True,
|
|
"size_bytes": file_size,
|
|
"size_mb": round(file_size / (1024 * 1024), 2)
|
|
}
|
|
except:
|
|
lora_file_info = {"exists": False}
|
|
else:
|
|
lora_file_info = {"exists": False}
|
|
|
|
return {
|
|
"status": "ready",
|
|
"lora_loaded": self.lora_loaded,
|
|
"lora_path": self.lora_path,
|
|
"model_info": {
|
|
"base_model": "black-forest-labs/FLUX.1-dev",
|
|
"lora_file": lora_file_info,
|
|
"lora_url": self.lora_url
|
|
}
|
|
}
|
|
|
|
@modal.method()
|
|
def inference(self, prompt: str, num_inference_steps: int = 50, width: int = 1024, height: int = 1024) -> dict:
|
|
|
|
final_prompt = prompt
|
|
|
|
print(f"π¨ Generating image:")
|
|
print(f" Original prompt: {prompt}")
|
|
print(f" Final prompt: {final_prompt}")
|
|
print(f" Dimensions: {width}x{height}")
|
|
print(f" LoRA status: {'β
Active' if self.lora_loaded else 'β Inactive'}")
|
|
|
|
start_time = time.time()
|
|
|
|
out = self.pipe(
|
|
final_prompt,
|
|
output_type="pil",
|
|
num_inference_steps=num_inference_steps,
|
|
width=width,
|
|
height=height,
|
|
max_sequence_length=512
|
|
).images[0]
|
|
|
|
|
|
byte_stream = BytesIO()
|
|
out.save(byte_stream, format="PNG")
|
|
image_bytes = byte_stream.getvalue()
|
|
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
|
|
|
generation_time = time.time() - start_time
|
|
print(f"β
Generated image in {generation_time:.2f} seconds")
|
|
|
|
return {
|
|
"image_base64": image_base64,
|
|
"generation_time": generation_time,
|
|
"final_prompt": final_prompt,
|
|
"lora_used": self.lora_loaded
|
|
}
|
|
|
|
fastapi_app = FastAPI(title="Flux Image Generation API")
|
|
|
|
|
|
model_instance = Model(compile=False)
|
|
|
|
@fastapi_app.post("/generate", response_model=ImageResponse)
|
|
async def generate_image(request: ImageRequest):
|
|
try:
|
|
print(f"Received request: {request.prompt} at {request.width}x{request.height}")
|
|
result = model_instance.inference.remote(
|
|
request.prompt,
|
|
request.num_inference_steps,
|
|
request.width,
|
|
request.height
|
|
)
|
|
return ImageResponse(**result)
|
|
except Exception as e:
|
|
print(f"Error generating image: {str(e)}")
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@fastapi_app.get("/health")
|
|
async def health_check():
|
|
return {"status": "healthy", "message": "Flux API server is running"}
|
|
|
|
@app.function(
|
|
image=flux_image.pip_install("fastapi", "uvicorn"),
|
|
keep_warm=1,
|
|
timeout=60 * MINUTES,
|
|
)
|
|
@modal.asgi_app()
|
|
def fastapi_server():
|
|
return fastapi_app
|
|
|
|
def optimize(pipe, compile=True):
|
|
|
|
pipe.transformer.fuse_qkv_projections()
|
|
pipe.vae.fuse_qkv_projections()
|
|
|
|
|
|
pipe.transformer.to(memory_format=torch.channels_last)
|
|
pipe.vae.to(memory_format=torch.channels_last)
|
|
|
|
if not compile:
|
|
return pipe
|
|
|
|
|
|
config = torch._inductor.config
|
|
config.disable_progress = False
|
|
config.conv_1x1_as_mm = True
|
|
config.coordinate_descent_tuning = True
|
|
config.coordinate_descent_check_all_directions = True
|
|
config.epilogue_fusion = False
|
|
|
|
|
|
pipe.transformer = torch.compile(
|
|
pipe.transformer, mode="max-autotune", fullgraph=True
|
|
)
|
|
pipe.vae.decode = torch.compile(
|
|
pipe.vae.decode, mode="max-autotune", fullgraph=True
|
|
)
|
|
|
|
|
|
print("π¦ Running torch compilation (may take up to 20 minutes)...")
|
|
pipe(
|
|
"dummy prompt to trigger torch compilation",
|
|
output_type="pil",
|
|
num_inference_steps=NUM_INFERENCE_STEPS,
|
|
).images[0]
|
|
print("π¦ Finished torch compilation")
|
|
|
|
return pipe
|
|
|
|
if __name__ == "__main__":
|
|
print("Starting Modal Flux API server...")
|
|
|