Spaces:
Sleeping
Sleeping
File size: 18,098 Bytes
0d7e6dc f7ade35 0d7e6dc ce145ec 0d7e6dc 19ca30f f7ade35 7b0da99 f7ade35 0d7e6dc 19ca30f 0d7e6dc 7b0da99 0d7e6dc f7ade35 3a918ff f7ade35 29ad2ca f7ade35 29ad2ca f7ade35 e776574 f7ade35 2fb4479 e776574 2fb4479 f7ade35 e776574 f7ade35 2fb4479 f7ade35 e776574 f7ade35 2fb4479 3a918ff f7ade35 e776574 f7ade35 e776574 f7ade35 e776574 f7ade35 29ad2ca f7ade35 e776574 f7ade35 2fb4479 e776574 2fb4479 e776574 2fb4479 f7ade35 e776574 f7ade35 e776574 f7ade35 29ad2ca f7ade35 e776574 f7ade35 e776574 f7ade35 e776574 f7ade35 2fb4479 f7ade35 e776574 f7ade35 29ad2ca f7ade35 e776574 f7ade35 2fb4479 e776574 2fb4479 e776574 2fb4479 f7ade35 2fb4479 f7ade35 3a918ff f7ade35 e776574 f7ade35 29ad2ca f7ade35 e776574 f7ade35 e776574 f7ade35 e776574 f7ade35 e776574 f7ade35 e776574 2fb4479 f7ade35 3a918ff 0d7e6dc e776574 0d7e6dc f7ade35 3a918ff 0d7e6dc f7ade35 0d7e6dc 29ad2ca 0d7e6dc f7ade35 0d7e6dc 29ad2ca f7ade35 29ad2ca f7ade35 29ad2ca 019546f 29ad2ca f7ade35 29ad2ca f7ade35 29ad2ca f7ade35 29ad2ca f7ade35 29ad2ca f7ade35 29ad2ca f7ade35 29ad2ca f7ade35 019546f f7ade35 29ad2ca f7ade35 29ad2ca f7ade35 29ad2ca f7ade35 29ad2ca 019546f 29ad2ca 019546f f7ade35 8404e8a 29ad2ca f7ade35 ce145ec f7ade35 0d7e6dc f7ade35 29ad2ca f7ade35 ce145ec 29ad2ca f7ade35 29ad2ca f7ade35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
"""
Career Agent - Intelligent CV and Cover Letter Generator
========================================================
An AI agent that autonomously analyzes job postings and candidate profiles
to create tailored application documents using multi-step reasoning.
Author: Career Agent Team
Version: 1.1 - SambaNova Edition
"""
import os
import logging
import gradio as gr
from typing import Optional, Dict, Any
from dotenv import load_dotenv
from openai import OpenAI
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# === SambaNova API Integration ===
class SambaNovaClient:
"""SambaNova client using OpenAI SDK."""
def __init__(self, api_key: str, model_name: str = "Meta-Llama-3.3-70B-Instruct"):
self.client = OpenAI(
api_key=api_key,
base_url="https://api.sambanova.ai/v1"
)
self.model_name = model_name
def generate(self, prompt: str, system_prompt: str = "You are a helpful assistant.") -> str:
"""Generate response using SambaNova API."""
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
temperature=0.1,
top_p=0.1,
max_tokens=3000
)
return response.choices[0].message.content or ""
except Exception as e:
logger.error(f"SambaNova API call failed: {e}")
return f"β API Error: {str(e)}"
# === Analysis Functions ===
def analyze_candidate_profile(client: SambaNovaClient, user_info: str) -> str:
"""Analyzes the candidate's profile to extract insights and positioning."""
system_prompt = "You are a senior career strategist with expertise in talent assessment and professional positioning."
prompt = f"""
Analyze this candidate profile in detail:
{user_info}
Provide a comprehensive analysis including:
- Experience level and career stage assessment
- Core competencies and unique value propositions
- Industry expertise and domain knowledge
- Leadership capabilities and soft skills evidence
- Career trajectory and growth potential
- Strategic positioning opportunities
- Areas of competitive advantage
Format your response as a structured professional assessment with clear sections.
"""
return client.generate(prompt, system_prompt)
def research_job_posting(client: SambaNovaClient, job_description: str) -> str:
"""Analyzes the job posting for strategic application guidance."""
system_prompt = "You are an expert recruiter and talent acquisition specialist with deep knowledge of job market trends."
prompt = f"""
Conduct a comprehensive analysis of this job posting:
{job_description}
Extract and analyze:
- Must-have vs nice-to-have qualifications
- Technical skills and experience requirements breakdown
- Company culture indicators and values alignment
- Key responsibilities and success metrics
- Career growth and advancement signals
- Compensation and benefits analysis
- Critical ATS keywords and industry terminology
- Hiring urgency and competition level indicators
- Decision-maker priorities and pain points
Provide strategic intelligence for optimal application positioning.
"""
return client.generate(prompt, system_prompt)
def assess_fit_and_strategy(client: SambaNovaClient, profile_analysis: str, job_research: str) -> str:
"""Evaluates fit between candidate and job, develops application strategy."""
system_prompt = "You are a strategic career consultant specializing in job application optimization and candidate positioning."
prompt = f"""
Based on the candidate analysis and job research below, develop a comprehensive application strategy:
CANDIDATE ANALYSIS:
{profile_analysis}
JOB INTELLIGENCE:
{job_research}
Provide detailed strategic assessment:
- Overall fit percentage with detailed justification
- Top 5 strongest selling points to emphasize
- Potential concerns and mitigation strategies
- Unique value proposition development
- Competitive differentiation approach
- Key messaging themes and positioning
- Recommended application tone and style
- Interview preparation insights
"""
return client.generate(prompt, system_prompt)
def generate_strategic_resume(client: SambaNovaClient, candidate_info: str, strategy: str) -> str:
"""Generates a tailored, ATS-optimized resume."""
system_prompt = "You are a professional resume writer and ATS optimization expert with extensive experience in creating winning resumes."
prompt = f"""
Create a professional, ATS-optimized resume based on:
CANDIDATE INFORMATION:
{candidate_info}
STRATEGIC GUIDANCE:
{strategy}
Generate a complete resume with:
- Compelling professional summary (3-4 lines)
- Core competencies/skills section optimized for ATS
- Professional experience with quantified achievements
- Education and certifications
- Additional relevant sections (projects, awards, etc.)
Format professionally with clear sections and bullet points.
Focus on impact, metrics, and value delivery.
"""
return client.generate(prompt, system_prompt)
def create_cover_letter(client: SambaNovaClient, candidate_info: str, strategy: str, job_description: str) -> str:
"""Generates a persuasive, personalized cover letter."""
system_prompt = "You are an expert cover letter writer specializing in compelling, personalized application letters that get results."
prompt = f"""
Write a persuasive cover letter based on:
CANDIDATE INFORMATION:
{candidate_info}
STRATEGIC POSITIONING:
{strategy}
JOB DESCRIPTION:
{job_description}
Create an engaging cover letter that:
- Opens with a compelling hook that grabs attention
- Demonstrates specific research about the company/role
- Connects candidate experience to concrete value delivery
- Shows cultural fit and genuine enthusiasm
- Addresses potential concerns proactively
- Closes with a confident, action-oriented call-to-action
Keep it concise (3-4 paragraphs) but impactful.
"""
return client.generate(prompt, system_prompt)
def quality_assurance_check(client: SambaNovaClient, resume: str, cover_letter: str, job_posting: str) -> str:
"""Performs quality review of generated documents."""
system_prompt = "You are a senior HR professional and application reviewer with expertise in document quality assessment."
prompt = f"""
Perform a comprehensive quality review of these application materials:
RESUME:
{resume}
COVER LETTER:
{cover_letter}
ORIGINAL JOB POSTING:
{job_posting}
Evaluate and provide feedback on:
- ATS optimization and keyword alignment (score /10)
- Document consistency and professional presentation (score /10)
- Value proposition clarity and impact (score /10)
- Competitive differentiation strength (score /10)
- Overall application effectiveness (score /10)
Provide specific improvement recommendations and an overall quality assessment.
"""
return client.generate(prompt, system_prompt)
# === Main Career Agent Class ===
class CareerAgent:
"""Main Career Agent class handling AI-powered document generation."""
def __init__(self):
self.client = self._initialize_client()
def _initialize_client(self) -> SambaNovaClient:
"""Initialize SambaNova client."""
api_key = os.getenv("SAMBANOVA_API_KEY")
if not api_key:
raise ValueError("SAMBANOVA_API_KEY environment variable is required.")
return SambaNovaClient(api_key=api_key)
def process_application(self, user_info: str, job_description: str) -> str:
"""Process the complete application with step-by-step analysis."""
if not user_info.strip() or not job_description.strip():
return "β Please provide both your profile and the job description."
try:
logger.info("π Step 1: Analyzing candidate profile...")
profile_analysis = analyze_candidate_profile(self.client, user_info)
logger.info("π Step 2: Researching job requirements...")
job_research = research_job_posting(self.client, job_description)
logger.info("π― Step 3: Assessing fit and developing strategy...")
strategy = assess_fit_and_strategy(self.client, profile_analysis, job_research)
logger.info("π Step 4: Generating tailored resume...")
resume = generate_strategic_resume(self.client, user_info, strategy)
logger.info("βοΈ Step 5: Creating personalized cover letter...")
cover_letter = create_cover_letter(self.client, user_info, strategy, job_description)
logger.info("β
Step 6: Performing quality assurance...")
qa_review = quality_assurance_check(self.client, resume, cover_letter, job_description)
# Format final output
result = f"""
=== π TAILORED RESUME ===
{resume}
=== βοΈ PERSONALIZED COVER LETTER ===
{cover_letter}
=== π― STRATEGIC ANALYSIS ===
{strategy}
=== β
QUALITY ASSURANCE REVIEW ===
{qa_review}
---
Generated by SambaNova Llama 3.3 70B Instruct
"""
logger.info("β
Application processing completed successfully!")
return result.strip()
except Exception as e:
logger.error(f"Processing error: {e}")
return f"""β SambaNova API Error: {str(e)}
π§ Troubleshooting:
- Verify your SAMBANOVA_API_KEY is valid
- Check your internet connection
- Ensure you have sufficient API credits
- Try again in a few moments
If the problem persists, please check your API key configuration."""
# === Enhanced Gradio Interface ===
class CareerAgentInterface:
def __init__(self, agent: CareerAgent):
self.agent = agent
def create_interface(self) -> gr.Blocks:
"""Create enhanced side-by-side interface."""
with gr.Blocks(title="π― Intelligent Career Agent (SambaNova)", css=self._css()) as demo:
# Header
gr.Markdown("""
# π― Intelligent Career Agent
### Powered by SambaNova's Llama 3.3 70B Instruct
Generate tailored resumes and cover letters using cutting-edge AI technology.
""")
# Status indicator
status = gr.Markdown("β
**Ready** - Llama 3.3 70B Model Loaded", elem_classes="status-ready")
# Main layout - side by side
with gr.Row(equal_height=True):
# Left column - Inputs
with gr.Column(scale=1):
gr.Markdown("## π Input Information")
self.user_info = gr.Textbox(
label="π€ Your Professional Profile",
placeholder="""Example:
β’ Software Engineer with 5+ years experience
β’ Expert in Python, React, AWS
β’ Led team of 8 developers at TechCorp
β’ MBA in Technology Management
β’ Passionate about AI and machine learning
Paste your complete background here...""",
lines=12,
max_lines=15
)
self.job_description = gr.Textbox(
label="π Target Job Description",
placeholder="""Paste the complete job posting here:
- Job title and company
- Requirements and qualifications
- Responsibilities
- Company culture info
- Any other relevant details...""",
lines=8,
max_lines=12
)
# Control buttons
with gr.Row():
self.generate_btn = gr.Button(
"π Generate Application",
variant="primary",
size="lg"
)
self.clear_btn = gr.Button(
"ποΈ Clear All",
variant="secondary"
)
# Right column - Output
with gr.Column(scale=1):
gr.Markdown("## π Generated Documents")
self.output = gr.Textbox(
label="π― Your Tailored Application Materials",
placeholder="Click 'Generate Application' to create your personalized resume and cover letter...",
lines=25,
max_lines=30,
show_copy_button=True,
interactive=False
)
# Progress and tips
gr.Markdown("""
### π‘ Tips for Best Results:
- **Be specific** about your achievements with numbers/metrics
- **Include keywords** from your target industry
- **Paste the complete** job description for better matching
- **Review the output** and customize as needed
### π Processing Steps:
1. **Profile Analysis** - Understanding your background
2. **Job Research** - Decoding employer requirements
3. **Strategy Development** - Optimizing your positioning
4. **Resume Generation** - Creating tailored content
5. **Cover Letter Writing** - Personalizing your pitch
6. **Quality Assurance** - Ensuring excellence
""")
# Event handlers
def process_with_status(user_info, job_desc):
try:
result = self.agent.process_application(user_info, job_desc)
return result, "β
**Complete** - Your application materials are ready!"
except Exception as e:
return f"β Error: {str(e)}", "β **Error** - Please check your API key and try again"
self.generate_btn.click(
fn=lambda: "π **Generating...** SambaNova Llama 3.3 70B is processing your request",
outputs=status
).then(
fn=process_with_status,
inputs=[self.user_info, self.job_description],
outputs=[self.output, status]
)
self.clear_btn.click(
fn=lambda: ("", "", "Click 'Generate Application' to create your personalized resume and cover letter...", "β
**Ready** - Llama 3.3 70B Model Loaded"),
outputs=[self.user_info, self.job_description, self.output, status]
)
return demo
def _css(self) -> str:
"""Enhanced CSS for better visual design."""
return """
.gradio-container {
max-width: 1400px !important;
margin: auto;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.status-ready {
background: linear-gradient(90deg, #10b981, #059669);
color: white;
padding: 10px;
border-radius: 8px;
text-align: center;
margin: 10px 0;
}
/* Button styling */
.btn-primary {
background: linear-gradient(90deg, #3b82f6, #1d4ed8) !important;
border: none !important;
color: white !important;
font-weight: bold !important;
}
.btn-primary:hover {
background: linear-gradient(90deg, #1d4ed8, #1e40af) !important;
}
/* Enhanced textbox styling */
.textbox textarea {
border-radius: 8px !important;
border: 2px solid #e5e7eb !important;
}
.textbox textarea:focus {
border-color: #3b82f6 !important;
box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1) !important;
}
/* Column gap */
.flex.gap-4 > div {
gap: 1.5rem;
}
"""
# === Entry Point ===
def main():
"""Main entry point with enhanced error handling."""
try:
print("π Initializing Career Agent with SambaNova...")
# Check for API key
if not os.getenv("SAMBANOVA_API_KEY"):
print("β Error: SAMBANOVA_API_KEY environment variable not found!")
print("Please set your SambaNova API key:")
print("export SAMBANOVA_API_KEY='your-api-key-here'")
return
career_agent = CareerAgent()
print("β
SambaNova Llama 3.3 70B initialized successfully!")
interface = CareerAgentInterface(career_agent)
demo = interface.create_interface()
print("π Launching Gradio interface...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
except Exception as e:
logger.error(f"Startup error: {e}")
print(f"β Startup Error: {str(e)}")
print("\nTroubleshooting:")
print("1. Check your SAMBANOVA_API_KEY is valid")
print("2. Ensure you have internet connection")
print("3. Verify all dependencies are installed: pip install openai gradio python-dotenv")
if __name__ == "__main__":
main() |