Spaces:
Running
Running
File size: 8,927 Bytes
2473fee e7edd2e b2ca056 2473fee e7edd2e b2ca056 2473fee b2ca056 2473fee e7edd2e b2ca056 e7edd2e 2473fee e7edd2e 2473fee e7edd2e b2ca056 e7edd2e b2ca056 e7edd2e b2ca056 e7edd2e b2ca056 e7edd2e b2ca056 e7edd2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import gradio as gr
import asyncio
import tempfile
from dotenv import find_dotenv, load_dotenv
from langchain.chat_models import init_chat_model
from langchain.schema import HumanMessage, SystemMessage
from langgraph.prebuilt import create_react_agent
from langsmith import traceable
# Import the CodeAct agent functionality
from agent import FileInjectedPyodideSandbox, create_pyodide_eval_fn, create_codeact
# Load environment variables
load_dotenv(find_dotenv())
# Initialize OpenAI model
openai_model = init_chat_model(
model="gpt-4.1-nano-2025-04-14",
api_key=os.getenv("OPENAI_API_KEY"),
)
# Create the basic chat agent
chat_agent = create_react_agent(openai_model, tools=[])
# Initialize CodeAct model for file analysis
codeact_model = init_chat_model("gpt-4.1-2025-04-14", model_provider="openai")
# Store uploaded file path globally
uploaded_file_path = None
@traceable
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
"""
Main chat function that processes user input and returns AI response
"""
try:
# Convert history to LangChain message format
messages = [SystemMessage(content=system_message)]
# Add conversation history
for user_msg, assistant_msg in history:
if user_msg:
messages.append(HumanMessage(content=user_msg))
if assistant_msg:
messages.append(SystemMessage(content=assistant_msg))
# Add current user message
messages.append(HumanMessage(content=message))
# Prepare input for the agent
input_data = {"messages": messages}
# Stream the response
response_text = ""
for chunk in chat_agent.stream(input_data, stream_mode="values"):
if "messages" in chunk and chunk["messages"]:
latest_message = chunk["messages"][-1]
if hasattr(latest_message, 'content'):
current_content = latest_message.content
if current_content and len(current_content) > len(response_text):
response_text = current_content
yield response_text
# Ensure we return something even if streaming doesn't work
if not response_text:
yield "I'm sorry, I couldn't process your message. Please check your OpenAI API key."
except Exception as e:
yield f"Error: {str(e)}. Please make sure your OpenAI API key is set correctly."
def handle_file_upload(file):
"""Handle file upload and store the path globally"""
global uploaded_file_path
if file is not None:
uploaded_file_path = file.name
return f"β
File uploaded successfully: {os.path.basename(file.name)}"
else:
uploaded_file_path = None
return "β No file uploaded"
async def analyze_uploaded_file():
"""Analyze the uploaded file using CodeAct agent"""
global uploaded_file_path
if not uploaded_file_path or not os.path.exists(uploaded_file_path):
return "β No file uploaded or file not found. Please upload a file first."
try:
# Create sandbox with the uploaded file
sandbox = FileInjectedPyodideSandbox(
file_path=uploaded_file_path,
virtual_path="/uploaded_file.log",
sessions_dir=None, # Will create temp directory automatically
allow_net=True
)
eval_fn = create_pyodide_eval_fn(sandbox)
code_act = create_codeact(codeact_model, [], eval_fn)
agent = code_act.compile()
# Create analysis query based on file type
file_ext = os.path.splitext(uploaded_file_path)[1].lower()
if file_ext in ['.log', '.txt']:
query = """
Analyze this uploaded file and provide:
1. **Content Overview** - What type of data/logs this file contains
2. **Key Patterns** - Important patterns, trends, or anomalies found
3. **Statistical Summary** - Basic statistics (line count, data distribution, etc.)
4. **Insights & Findings** - Key takeaways from the analysis
5. **Recommendations** - Suggested actions based on the analysis
DATA SOURCES AVAILABLE:
- `file_content`: Raw file content as a string
- `log_lines`: List of individual lines
- `total_lines`: Number of lines in the file
- File path: `/uploaded_file.log` (can be read with open('/uploaded_file.log', 'r'))
Generate Python code to analyze the file and provide comprehensive insights.
"""
else:
query = f"""
Analyze this uploaded {file_ext} file and provide:
1. **File Type Analysis** - What type of file this is and its structure
2. **Content Summary** - Overview of the file contents
3. **Key Information** - Important data points or patterns found
4. **Statistical Analysis** - Basic statistics and data distribution
5. **Recommendations** - Suggested next steps or insights
DATA SOURCES AVAILABLE:
- `file_content`: Raw file content as a string
- `log_lines`: List of individual lines
- `total_lines`: Number of lines in the file
- File path: `/uploaded_file.log`
Generate Python code to analyze this file and provide comprehensive insights.
"""
# Run the analysis
result_parts = []
async for typ, chunk in agent.astream(
{"messages": query},
stream_mode=["values", "messages"],
):
if typ == "messages":
result_parts.append(chunk[0].content)
elif typ == "values":
if chunk and "messages" in chunk:
final_message = chunk["messages"][-1]
if hasattr(final_message, 'content'):
result_parts.append(f"\n\n**Final Analysis:**\n{final_message.content}")
return "\n".join(result_parts) if result_parts else "Analysis completed but no output generated."
except Exception as e:
return f"β Error analyzing file: {str(e)}"
def run_file_analysis():
"""Wrapper to run async file analysis in sync context"""
return asyncio.run(analyze_uploaded_file())
# Create the Gradio interface
with gr.Blocks(title="DataForge - AI Assistant with File Analysis") as demo:
gr.Markdown("# π DataForge - AI Assistant with File Analysis")
gr.Markdown("Upload files for analysis or chat with the AI assistant.")
with gr.Tab("π¬ Chat Assistant"):
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a helpful AI assistant. Be friendly, informative, and concise in your responses.",
label="System message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
title="Chat with AI Assistant",
description="Ask questions or get help with any topic."
)
with gr.Tab("π File Analysis"):
gr.Markdown("## Upload and Analyze Files")
gr.Markdown("Upload log files, text files, or other data files for comprehensive AI-powered analysis.")
with gr.Row():
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload File for Analysis",
file_types=[".txt", ".log", ".csv", ".json", ".xml", ".py", ".js", ".html", ".md"],
type="filepath"
)
upload_status = gr.Textbox(
label="Upload Status",
value="No file uploaded",
interactive=False
)
analyze_btn = gr.Button("π Analyze File", variant="primary", size="lg")
with gr.Column(scale=2):
analysis_output = gr.Textbox(
label="Analysis Results",
lines=20,
max_lines=30,
placeholder="Upload a file and click 'Analyze File' to see detailed analysis results here...",
interactive=False
)
# Event handlers
file_upload.change(
fn=handle_file_upload,
inputs=[file_upload],
outputs=[upload_status]
)
analyze_btn.click(
fn=run_file_analysis,
inputs=[],
outputs=[analysis_output]
)
if __name__ == "__main__":
demo.launch()
|