Spaces:
Runtime error
Runtime error
File size: 12,559 Bytes
2473fee e7edd2e b2ca056 2473fee e7edd2e b2ca056 3774bab 2473fee b2ca056 2473fee e7edd2e b2ca056 e7edd2e 2473fee e7edd2e 2473fee e7edd2e b2ca056 3774bab b2ca056 3774bab b2ca056 3774bab b2ca056 3774bab e7edd2e b2ca056 3774bab b2ca056 3774bab b2ca056 3774bab b2ca056 3774bab b2ca056 3774bab b2ca056 3774bab b2ca056 3774bab b2ca056 3774bab b2ca056 e7edd2e 3774bab e7edd2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
import gradio as gr
import asyncio
import tempfile
from dotenv import find_dotenv, load_dotenv
from langchain.chat_models import init_chat_model
from langchain.schema import HumanMessage, SystemMessage
from langgraph.prebuilt import create_react_agent
from langsmith import traceable
# Import the CodeAct agent functionality
from agent import FileInjectedPyodideSandbox, create_pyodide_eval_fn, create_codeact
# Import the new guided analysis functionality
from graph import analyze_file_with_guidance_sync, guided_analysis_graph
# Load environment variables
load_dotenv(find_dotenv())
# Initialize OpenAI model
openai_model = init_chat_model(
model="gpt-4.1-nano-2025-04-14",
api_key=os.getenv("OPENAI_API_KEY"),
)
# Create the basic chat agent
chat_agent = create_react_agent(openai_model, tools=[])
# Initialize CodeAct model for file analysis
codeact_model = init_chat_model("gpt-4.1-2025-04-14", model_provider="openai")
# Store uploaded file path globally
uploaded_file_path = None
@traceable
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
"""
Main chat function that processes user input and returns AI response
"""
try:
# Convert history to LangChain message format
messages = [SystemMessage(content=system_message)]
# Add conversation history
for user_msg, assistant_msg in history:
if user_msg:
messages.append(HumanMessage(content=user_msg))
if assistant_msg:
messages.append(SystemMessage(content=assistant_msg))
# Add current user message
messages.append(HumanMessage(content=message))
# Prepare input for the agent
input_data = {"messages": messages}
# Stream the response
response_text = ""
for chunk in chat_agent.stream(input_data, stream_mode="values"):
if "messages" in chunk and chunk["messages"]:
latest_message = chunk["messages"][-1]
if hasattr(latest_message, 'content'):
current_content = latest_message.content
if current_content and len(current_content) > len(response_text):
response_text = current_content
yield response_text
# Ensure we return something even if streaming doesn't work
if not response_text:
yield "I'm sorry, I couldn't process your message. Please check your OpenAI API key."
except Exception as e:
yield f"Error: {str(e)}. Please make sure your OpenAI API key is set correctly."
def handle_file_upload(file):
"""Handle file upload and store the path globally"""
global uploaded_file_path
if file is not None:
uploaded_file_path = file.name
return f"β
File uploaded successfully: {os.path.basename(file.name)}"
else:
uploaded_file_path = None
return "β No file uploaded"
def analyze_file_with_question(user_question):
"""
Analyze the uploaded file using the new guided approach with user question
"""
global uploaded_file_path
if not uploaded_file_path or not os.path.exists(uploaded_file_path):
return "β No file uploaded or file not found. Please upload a file first."
if not user_question or user_question.strip() == "":
user_question = "Provide a comprehensive analysis of this file including security, performance, and data insights."
try:
# Use the new guided analysis approach
result = analyze_file_with_guidance_sync(uploaded_file_path, user_question)
return result
except Exception as e:
return f"β Error in guided analysis: {str(e)}"
def get_question_suggestions(file_path):
"""
Generate suggested questions based on file type and structure
"""
if not file_path or not os.path.exists(file_path):
return []
file_ext = os.path.splitext(file_path)[1].lower()
base_suggestions = [
"What are the main patterns in this file?",
"Are there any security issues or anomalies?",
"Provide a statistical summary of the data",
"What insights can you extract from this file?"
]
if file_ext in ['.log', '.txt']:
return [
"Find any security threats or failed login attempts",
"Identify performance bottlenecks and slow operations",
"What errors or warnings are present?",
"Show me time-based trends in the data",
"Are there any suspicious IP addresses or user activities?"
] + base_suggestions
elif file_ext == '.csv':
return [
"Analyze the data distribution and statistics",
"Find correlations between columns",
"Identify outliers or anomalies in the data",
"What are the key insights from this dataset?"
] + base_suggestions
elif file_ext == '.json':
return [
"Parse and analyze the JSON structure",
"What are the key data fields and their values?",
"Find any nested patterns or relationships"
] + base_suggestions
else:
return base_suggestions
async def analyze_uploaded_file():
"""Legacy function - kept for backward compatibility"""
return analyze_file_with_question("Provide a comprehensive analysis of this file.")
def run_file_analysis():
"""Wrapper to run async file analysis in sync context"""
return asyncio.run(analyze_uploaded_file())
def update_question_suggestions():
"""Update question suggestions based on uploaded file"""
global uploaded_file_path
suggestions = get_question_suggestions(uploaded_file_path)
return gr.Dropdown.update(choices=suggestions, value=suggestions[0] if suggestions else "")
# Create the Gradio interface
with gr.Blocks(title="DataForge - AI Assistant with Advanced File Analysis") as demo:
gr.Markdown("# π DataForge - AI Assistant with Advanced File Analysis")
gr.Markdown("Upload files and ask specific questions for AI-powered guided analysis using LangGraph.")
with gr.Tab("π¬ Chat Assistant"):
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a helpful AI assistant. Be friendly, informative, and concise in your responses.",
label="System message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
title="Chat with AI Assistant",
description="Ask questions or get help with any topic."
)
with gr.Tab("π Advanced File Analysis"):
gr.Markdown("## π Guided File Analysis with LangGraph")
gr.Markdown("""
Upload files and ask specific questions for targeted AI analysis. Our guided approach:
1. π **Examines** your file structure and patterns
2. π― **Generates** specific code guidance based on your question
3. π **Executes** enhanced analysis with improved accuracy
""")
with gr.Row():
with gr.Column(scale=1):
# File Upload Section
gr.Markdown("### π€ File Upload")
file_upload = gr.File(
label="Upload File for Analysis",
file_types=[".txt", ".log", ".csv", ".json", ".xml", ".py", ".js", ".html", ".md"],
type="filepath"
)
upload_status = gr.Textbox(
label="Upload Status",
value="No file uploaded",
interactive=False
)
# Question Section
gr.Markdown("### β Ask Your Question")
question_suggestions = gr.Dropdown(
label="Question Suggestions (select or type your own)",
choices=[],
allow_custom_value=True,
value=""
)
user_question = gr.Textbox(
label="Your Question about the File",
placeholder="What would you like to know about this file?",
lines=3
)
analyze_btn = gr.Button("π Run Guided Analysis", variant="primary", size="lg")
# Analysis Info
gr.Markdown("### βΉοΈ Analysis Method")
gr.Markdown("""
**Guided Analysis Features:**
- π― Question-aware code generation
- π File structure examination
- π Dynamic prompt optimization
- β
Higher accuracy than generic analysis
""")
with gr.Column(scale=2):
analysis_output = gr.Textbox(
label="π Guided Analysis Results",
lines=25,
max_lines=35,
placeholder="Upload a file, ask a question, and click 'Run Guided Analysis' to see detailed results here...",
interactive=False
)
# Event handlers
file_upload.change(
fn=handle_file_upload,
inputs=[file_upload],
outputs=[upload_status]
).then(
fn=update_question_suggestions,
inputs=[],
outputs=[question_suggestions]
)
question_suggestions.change(
fn=lambda x: x,
inputs=[question_suggestions],
outputs=[user_question]
)
analyze_btn.click(
fn=analyze_file_with_question,
inputs=[user_question],
outputs=[analysis_output]
)
with gr.Tab("π Analysis Examples"):
gr.Markdown("## π‘ Example Questions by File Type")
with gr.Accordion("π Security Analysis Questions", open=False):
gr.Markdown("""
**For Log Files:**
- "Find any failed login attempts and suspicious IP addresses"
- "Identify potential security threats or anomalies"
- "Show me authentication errors and user access patterns"
- "Are there any brute force attacks or repeated failures?"
**For Access Logs:**
- "Detect unusual access patterns or potential intrusions"
- "Find requests with suspicious user agents or payloads"
- "Identify high-frequency requests from single IPs"
""")
with gr.Accordion("β‘ Performance Analysis Questions", open=False):
gr.Markdown("""
**For Application Logs:**
- "Which API endpoints are slowest and why?"
- "Find performance bottlenecks and response time issues"
- "Show me timeout errors and failed requests"
- "What are the peak usage times and load patterns?"
**For System Logs:**
- "Identify resource usage spikes and memory issues"
- "Find database query performance problems"
- "Show me error rates and system health indicators"
""")
with gr.Accordion("π Data Analysis Questions", open=False):
gr.Markdown("""
**For CSV/Data Files:**
- "Analyze data distribution and find statistical insights"
- "Identify outliers and anomalies in the dataset"
- "What correlations exist between different columns?"
- "Generate a comprehensive data quality report"
**For JSON Files:**
- "Parse the structure and extract key information"
- "Find patterns in nested data and relationships"
- "Summarize the main data points and values"
""")
if __name__ == "__main__":
demo.launch()
|