Spaces:
Runtime error
Runtime error
File size: 8,151 Bytes
3495357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import asyncio
import inspect
import uuid
import os
from typing import Any
from langchain.chat_models import init_chat_model
from langchain_sandbox import PyodideSandbox
from langgraph_codeact import EvalCoroutine, create_codeact
from dotenv import find_dotenv, load_dotenv
load_dotenv(find_dotenv())
class FileInjectedPyodideSandbox(PyodideSandbox):
"""Custom PyodideSandbox that can inject files into the virtual filesystem."""
def __init__(self, file_path: str = None, virtual_path: str = "/server.log", **kwargs):
super().__init__(**kwargs)
self.file_path = file_path
self.virtual_path = virtual_path
self._file_injected = False
async def execute(self, code: str, **kwargs):
# If we have a file to inject, prepend the injection code to the user code
if self.file_path and os.path.exists(self.file_path):
print(f"Injecting file {self.file_path} into execution")
try:
with open(self.file_path, 'r') as f:
file_content = f.read()
# Use base64 encoding to avoid string literal issues
import base64
encoded_content = base64.b64encode(file_content.encode('utf-8')).decode('ascii')
# Prepend file injection code to user code
injection_code = f'''
# File injection code - inject {self.virtual_path}
import base64
import os
# Decode the log file content from base64
encoded_content = """{encoded_content}"""
file_content = base64.b64decode(encoded_content).decode('utf-8')
# Create the file on disk for compatibility
with open("{self.virtual_path}", 'w') as f:
f.write(file_content)
# Make the content directly available as variables for analysis
log_lines = file_content.splitlines()
total_lines = len(log_lines)
print(f"[INJECTION] Successfully created {self.virtual_path} with {{len(file_content)}} characters")
print(f"[INJECTION] File content available as 'file_content' variable ({{len(file_content)}} chars)")
print(f"[INJECTION] Log lines available as 'log_lines' variable ({{total_lines}} lines)")
# Verify injection worked
if os.path.exists("{self.virtual_path}"):
print(f"[INJECTION] File {self.virtual_path} exists and ready for use")
else:
print(f"[INJECTION] ERROR: Failed to create {self.virtual_path}")
# Variables now available for analysis:
# - file_content: raw file content as string
# - log_lines: list of individual log lines
# - total_lines: number of lines in the log
# - File also available at: {self.virtual_path}
# End of injection code
'''
# Combine injection code with user code
combined_code = injection_code + "\n" + code
print(f"Combined code length: {len(combined_code)}")
return await super().execute(combined_code, **kwargs)
except Exception as e:
print(f"Error preparing file injection: {e}")
return await super().execute(code, **kwargs)
else:
return await super().execute(code, **kwargs)
def create_pyodide_eval_fn(sandbox: PyodideSandbox) -> EvalCoroutine:
"""Create an eval_fn that uses PyodideSandbox.
"""
async def async_eval_fn(
code: str, _locals: dict[str, Any]
) -> tuple[str, dict[str, Any]]:
# Create a wrapper function that will execute the code and return locals
wrapper_code = f"""
def execute():
try:
# Execute the provided code
{chr(10).join(" " + line for line in code.strip().split(chr(10)))}
return locals()
except Exception as e:
return {{"error": str(e)}}
execute()
"""
# Convert functions in _locals to their string representation
context_setup = ""
for key, value in _locals.items():
if callable(value):
# Get the function's source code
try:
src = inspect.getsource(value)
context_setup += f"\n{src}"
except:
# If we can't get source, skip it
pass
else:
context_setup += f"\n{key} = {repr(value)}"
try:
# Combine context setup and the actual code
full_code = context_setup + "\n\n" + wrapper_code
# Execute the code and get the result
response = await sandbox.execute(code=full_code)
# Check if execution was successful
if response.stderr:
return f"Error during execution: {response.stderr}", {}
# Get the output from stdout
output = (
response.stdout
if response.stdout
else "<Code ran, no output printed to stdout>"
)
result = response.result
# If there was an error in the result, return it
if isinstance(result, dict) and "error" in result:
return f"Error during execution: {result['error']}", {}
# Get the new variables by comparing with original locals
new_vars = {
k: v
for k, v in result.items()
if k not in _locals and not k.startswith("_")
}
return output, new_vars
except Exception as e:
return f"Error during PyodideSandbox execution: {repr(e)}", {}
return async_eval_fn
def read_file(file_path: str) -> str:
"""Read a file and return its content."""
with open(file_path, "r") as file:
return file.read()
tools = []
model = init_chat_model("gpt-4.1-2025-04-14", model_provider="openai")
# Specify the log file path
log_file_path = "/Users/hw/Desktop/codeact_agent/server.log"
# Create our custom sandbox with file injection capability
sandbox = FileInjectedPyodideSandbox(
file_path=log_file_path,
virtual_path="/server.log",
allow_net=True
)
eval_fn = create_pyodide_eval_fn(sandbox)
code_act = create_codeact(model, tools, eval_fn)
agent = code_act.compile()
query = """
Analyze these server logs and provide:
1. Security threat summary - identify attack patterns, suspicious IPs, and breach attempts
2. Performance bottlenecks - find slow endpoints, database issues, and resource constraints
3. User behavior analysis - login patterns, most accessed endpoints, session durations
4. System health report - error rates, critical alerts, and infrastructure issues
5. Recommended actions based on the analysis
LOG FORMAT INFORMATION:
The server logs follow this format:
YYYY-MM-DD HH:MM:SS [LEVEL] event_type: key=value, key=value, ...
Sample log entries:
- 2024-01-15 08:23:45 [INFO] user_login: user=john_doe, ip=192.168.1.100, success=true
- 2024-01-15 08:24:12 [INFO] api_request: endpoint=/api/users, method=GET, user=john_doe, response_time=45ms
- 2024-01-15 08:27:22 [WARN] failed_login: user=admin, ip=203.45.67.89, attempts=3
- 2024-01-15 08:38:33 [CRITICAL] security_alert: suspicious_activity, ip=185.234.72.19, pattern=sql_injection_attempt
- 2024-01-15 08:26:01 [ERROR] database_connection: host=db-primary, error=timeout, duration=30s
Key log levels: INFO, WARN, ERROR, CRITICAL
Key event types: user_login, user_logout, api_request, failed_login, security_alert, database_connection, etc.
DATA SOURCES AVAILABLE:
- `file_content`: Raw log content as a string
- `log_lines`: List of individual log lines
- `total_lines`: Number of lines in the log
- File path: `/server.log` (can be read with open('/server.log', 'r'))
Generate python code and run it in the sandbox to get the analysis.
"""
async def run_agent(query: str):
# Stream agent outputs
async for typ, chunk in agent.astream(
{"messages": query},
stream_mode=["values", "messages"],
):
if typ == "messages":
print(chunk[0].content, end="")
elif typ == "values":
print("\n\n---answer---\n\n", chunk)
if __name__ == "__main__":
# Run the agent
asyncio.run(run_agent(query)) |