Spaces:
Running
Running
File size: 23,754 Bytes
3774bab 3c3b761 3774bab 230ff5f 3774bab 3c3b761 3774bab 3c3b761 3774bab 3c3b761 3774bab 3c3b761 3774bab 3c3b761 3774bab 3c3b761 3774bab 3c3b761 3774bab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import asyncio
import ast
import os
import re
from typing import Annotated, Dict, List, Optional
from typing_extensions import TypedDict
from dotenv import find_dotenv, load_dotenv
from langchain.chat_models import init_chat_model
from langgraph.graph import END, START, StateGraph
from pydantic import BaseModel, Field
# Import your existing agent functionality
from agent import create_analysis_agent, FileInjectedPyodideSandbox, create_pyodide_eval_fn
load_dotenv(find_dotenv())
# Initialize the language model
model = init_chat_model(
model="o3-2025-04-16",
api_key=os.getenv("OPENAI_API_KEY"),
)
class FileExamination(BaseModel):
"""File examination results"""
file_type: str = Field(description="Type of file detected (log, csv, json, etc.)")
structure_pattern: str = Field(description="Detected structure pattern of the file")
sample_lines: List[str] = Field(description="First few lines of the file")
key_patterns: List[str] = Field(description="Important patterns found in sample")
data_format: str = Field(description="Format of data (structured, unstructured, mixed)")
complexity_level: str = Field(description="Simple, Medium, or Complex")
class CodeGuidance(BaseModel):
"""Code generation guidance"""
analysis_approach: str = Field(description="Recommended analysis approach")
required_imports: List[str] = Field(description="Python imports needed")
code_structure: str = Field(description="Step-by-step code structure")
specific_patterns: List[str] = Field(description="Specific regex patterns to use")
expected_outputs: List[str] = Field(description="What outputs to generate")
error_handling: str = Field(description="Error handling recommendations")
class CodeAnalysisState(TypedDict):
"""State for the code analysis workflow"""
file_path: str # Input file path
analysis_query: Optional[str] # Optional custom analysis query
# File examination results
file_examination: Optional[FileExamination]
# Generated guidance
code_guidance: Optional[CodeGuidance]
# Final results
generated_code: Optional[str]
execution_result: Optional[str]
final_analysis: Optional[str]
def validate_python_code(code: str) -> tuple[bool, str]:
"""
Validate Python code for syntax errors and potential issues.
Returns (is_valid, error_message)
"""
try:
# Try to parse the code as AST
ast.parse(code)
# Check for common problematic patterns
lines = code.split('\n')
for i, line in enumerate(lines, 1):
line_stripped = line.strip()
# Check for unterminated strings
if line_stripped.startswith('print(') and not line_stripped.endswith(')'):
if line_stripped.count('"') % 2 != 0 or line_stripped.count("'") % 2 != 0:
return False, f"Line {i}: Potentially unterminated string in print statement"
# Check for very long lines that might get truncated
if len(line) > 100:
return False, f"Line {i}: Line too long ({len(line)} chars) - may cause truncation"
return True, "Code validation passed"
except SyntaxError as e:
return False, f"Syntax error: {e.msg} at line {e.lineno}"
except Exception as e:
return False, f"Validation error: {str(e)}"
def examine_file_structure(state: CodeAnalysisState) -> CodeAnalysisState:
"""
Node 1: Examine the file structure by reading the first several lines
and understanding the file format and patterns.
"""
file_path = state["file_path"]
if not os.path.exists(file_path):
return {
"file_examination": FileExamination(
file_type="error",
structure_pattern="File not found",
sample_lines=[],
key_patterns=[],
data_format="unknown",
complexity_level="Simple"
)
}
try:
# Read first 20 lines for examination
with open(file_path, 'r', encoding='utf-8') as f:
sample_lines = []
for i, line in enumerate(f):
if i >= 20: # Read first 20 lines
break
sample_lines.append(line.rstrip('\n\r'))
if not sample_lines:
sample_lines = ["<empty file>"]
# Create examination prompt
examination_model = model.with_structured_output(FileExamination)
sample_text = '\n'.join(sample_lines[:10]) # Show first 10 lines in prompt
message = {
"role": "user",
"content": f"""
Examine this file sample and determine its structure and characteristics:
FILE PATH: {file_path}
FILE EXTENSION: {os.path.splitext(file_path)[1]}
FIRST 10 LINES:
```
{sample_text}
```
TOTAL SAMPLE LINES AVAILABLE: {len(sample_lines)}
Analyze and determine:
1. What type of file this is (log file, CSV, JSON, text, etc.)
2. The structure pattern (each line format/pattern)
3. Key patterns that would be important for analysis (timestamps, IPs, error codes, etc.)
4. Data format classification (structured/unstructured/mixed)
5. Complexity level for analysis (Simple/Medium/Complex)
Be specific about patterns you detect - these will guide code generation.
"""
}
examination_result = examination_model.invoke([message])
examination_result.sample_lines = sample_lines # Keep full sample
print(f"π File Examination Complete:")
print(f" Type: {examination_result.file_type}")
print(f" Structure: {examination_result.structure_pattern}")
print(f" Complexity: {examination_result.complexity_level}")
print(f" Key Patterns: {examination_result.key_patterns}")
return {"file_examination": examination_result}
except Exception as e:
print(f"β Error examining file: {e}")
return {
"file_examination": FileExamination(
file_type="error",
structure_pattern=f"Error reading file: {str(e)}",
sample_lines=[],
key_patterns=[],
data_format="unknown",
complexity_level="Simple"
)
}
def generate_code_guidance(state: CodeAnalysisState) -> CodeAnalysisState:
"""
Node 2: Generate specific code guidance based on both the file examination and user question.
This creates a targeted prompt for the code generation that addresses the user's specific needs.
"""
file_examination = state["file_examination"]
analysis_query = state.get("analysis_query", "")
if not file_examination or file_examination.file_type == "error":
return {
"code_guidance": CodeGuidance(
analysis_approach="Basic file analysis with error handling",
required_imports=["re", "os"],
code_structure="1. Check file exists\n2. Basic error handling\n3. Simple output",
specific_patterns=[],
expected_outputs=["Error message"],
error_handling="Try-catch with informative errors"
)
}
try:
guidance_model = model.with_structured_output(CodeGuidance)
sample_preview = '\n'.join(file_examination.sample_lines[:5])
# Analyze the user's question to understand intent
question_analysis = analyze_user_question(analysis_query or "General comprehensive analysis")
message = {
"role": "user",
"content": f"""
Generate QUESTION-SPECIFIC Python code guidance for analyzing this file:
FILE ANALYSIS RESULTS:
- File Type: {file_examination.file_type}
- Structure Pattern: {file_examination.structure_pattern}
- Data Format: {file_examination.data_format}
- Complexity: {file_examination.complexity_level}
- Key Patterns Found: {file_examination.key_patterns}
SAMPLE LINES:
```
{sample_preview}
```
USER'S SPECIFIC QUESTION: "{analysis_query or "General comprehensive analysis"}"
QUESTION ANALYSIS:
- Intent: {question_analysis['intent']}
- Focus Areas: {question_analysis['focus_areas']}
- Expected Analysis Type: {question_analysis['analysis_type']}
- Key Terms: {question_analysis['key_terms']}
Based on BOTH the file structure AND the user's specific question, provide targeted guidance:
1. **Analysis Approach**: What specific method addresses the user's question for this file type
2. **Required Imports**: Exact Python imports needed for this specific analysis
3. **Code Structure**: Step-by-step structure that answers the user's question
4. **Specific Patterns**: Exact regex patterns or operations needed for the user's query
5. **Expected Outputs**: What specific outputs will answer the user's question
6. **Error Handling**: How to handle issues specific to this analysis type
IMPORTANT - Make guidance QUESTION-SPECIFIC:
- If user asks about "security", focus on authentication, IPs, failed logins, errors
- If user asks about "performance", focus on response times, slow operations, bottlenecks
- If user asks about "patterns", focus on frequency analysis, trends, anomalies
- If user asks about "errors", focus on error extraction, categorization, root causes
- If user asks about "statistics", focus on counts, averages, distributions
- If user asks about "time trends", focus on temporal analysis, time-based patterns
Generate code guidance that directly answers their question using the detected file structure.
"""
}
guidance_result = guidance_model.invoke([message])
print(f"π― Code Guidance Generated:")
print(f" Approach: {guidance_result.analysis_approach}")
print(f" Imports: {guidance_result.required_imports}")
print(f" Patterns: {len(guidance_result.specific_patterns)} specific patterns")
return {"code_guidance": guidance_result}
except Exception as e:
print(f"β Error generating guidance: {e}")
return {
"code_guidance": CodeGuidance(
analysis_approach="Basic analysis with error recovery",
required_imports=["re", "os"],
code_structure="Simple analysis with error handling",
specific_patterns=[],
expected_outputs=["Basic file information"],
error_handling="Comprehensive try-catch blocks"
)
}
def execute_guided_analysis(state: CodeAnalysisState) -> CodeAnalysisState:
"""
Node 3: Execute the file analysis using the generated guidance with code quality validation.
"""
file_path = state["file_path"]
file_examination = state["file_examination"]
code_guidance = state["code_guidance"]
analysis_query = state.get("analysis_query", "")
if not file_examination or not code_guidance:
return {
"execution_result": "β Missing examination or guidance data",
"final_analysis": "Analysis failed due to missing preliminary data"
}
try:
# Create the guided analysis query with strict code quality requirements
guided_query = f"""Based on the file examination and guidance, analyze this file with the following SPECIFIC instructions:
FILE CONTEXT:
- File Type: {file_examination.file_type}
- Structure: {file_examination.structure_pattern}
- Data Format: {file_examination.data_format}
- Complexity: {file_examination.complexity_level}
CODING GUIDANCE TO FOLLOW:
- Analysis Approach: {code_guidance.analysis_approach}
- Required Imports: {', '.join(code_guidance.required_imports)}
- Code Structure: {code_guidance.code_structure}
- Specific Patterns: {code_guidance.specific_patterns}
- Expected Outputs: {', '.join(code_guidance.expected_outputs)}
- Error Handling: {code_guidance.error_handling}
SAMPLE FILE STRUCTURE (first few lines):
```
{chr(10).join(file_examination.sample_lines[:5])}
```
USER REQUEST: {analysis_query or "Comprehensive analysis following the guidance above"}
CRITICAL CODE QUALITY REQUIREMENTS:
1. ALL print statements MUST be on single lines with properly closed quotes
2. NO multi-line strings or f-strings that span multiple lines
3. NO print statements longer than 80 characters - break into multiple prints instead
4. ALL strings must be properly terminated with matching quotes
5. Use short variable names and concise output formatting
6. If you need to print long text, use multiple short print() calls
7. Always close parentheses, brackets, and quotes on the same line they open
8. Use simple string concatenation instead of complex f-strings for long output
9. NEVER use triple quotes for multi-line strings in limited execution environments
10. Test each print statement individually to ensure it executes without truncation
EXAMPLE OF SAFE CODING PRACTICES:
```python
# GOOD - Short, single-line prints
print("=== Results ===")
print(f"Count: {{count}}")
print(f"User: {{user}}")
# BAD - Long print that could be truncated
print(f"This is a very long print statement that could get truncated...")
# GOOD - Break long output into multiple prints
print("Analysis complete:")
print(f"Found {{count}} items")
print(f"Top user: {{user}}")
```
MANDATORY CODE GENERATION PROCESS:
1. Generate your analysis code following the above requirements
2. Before presenting the code, internally validate each line for potential issues
3. Ensure ALL print statements are under 80 characters
4. Verify all quotes and parentheses are properly closed
5. If any line might cause issues, rewrite it using multiple shorter statements
INSTRUCTIONS:
1. Follow the specified analysis approach exactly
2. Import only the recommended libraries: {', '.join(code_guidance.required_imports)}
3. Use the specific patterns provided: {code_guidance.specific_patterns}
4. Structure your code following: {code_guidance.code_structure}
5. Generate the expected outputs: {', '.join(code_guidance.expected_outputs)}
6. Implement proper error handling: {code_guidance.error_handling}
7. ENSURE ALL CODE FOLLOWS THE QUALITY REQUIREMENTS ABOVE
Since you have detailed guidance about this specific file structure, your code should be highly accurate and efficient.
The file examination shows this is a {file_examination.file_type} with {file_examination.data_format} data format.
Write Python code that leverages this specific knowledge for optimal analysis and follows strict code quality standards.
"""
print(f"π Executing guided analysis...")
print(f" Using {len(code_guidance.required_imports)} specific imports")
print(f" Following {file_examination.complexity_level} complexity approach")
# Use the existing agent with the guided query
agent = create_analysis_agent(file_path, model)
async def run_guided_analysis():
result_parts = []
async for typ, chunk in agent.astream(
{"messages": guided_query},
stream_mode=["values", "messages"],
):
if typ == "messages":
if hasattr(chunk[0], 'content') and chunk[0].content:
result_parts.append(chunk[0].content)
elif typ == "values":
if chunk and "messages" in chunk:
final_message = chunk["messages"][-1]
if hasattr(final_message, 'content') and final_message.content:
result_parts.append(f"\n\n=== FINAL ANALYSIS ===\n{final_message.content}")
return "\n".join(result_parts) if result_parts else "Analysis completed but no output generated."
# Run the analysis
execution_result = asyncio.run(run_guided_analysis())
# Create final analysis summary
final_analysis = f"""=== GUIDED FILE ANALYSIS RESULTS ===
File: {file_path}
Type: {file_examination.file_type} ({file_examination.data_format})
Approach: {code_guidance.analysis_approach}
{execution_result}
=== ANALYSIS METADATA ===
- Examination guided approach: β
- Specific patterns used: {len(code_guidance.specific_patterns)} patterns
- Complexity level: {file_examination.complexity_level}
- Guided imports: {', '.join(code_guidance.required_imports)}
"""
print(f"β
Guided analysis completed successfully!")
return {
"execution_result": execution_result,
"final_analysis": final_analysis
}
except Exception as e:
error_msg = f"β Error in guided analysis execution: {str(e)}"
print(error_msg)
return {
"execution_result": error_msg,
"final_analysis": f"Analysis failed: {str(e)}"
}
def build_guided_analysis_graph():
"""
Build the guided file analysis workflow graph.
The workflow:
1. Examine file structure (first ~20 lines)
2. Generate specific code guidance based on structure
3. Execute analysis with improved guidance
"""
builder = StateGraph(CodeAnalysisState)
# Add nodes
builder.add_node("examine_file_structure", examine_file_structure)
builder.add_node("generate_code_guidance", generate_code_guidance)
builder.add_node("execute_guided_analysis", execute_guided_analysis)
# Add edges - linear workflow
builder.add_edge(START, "examine_file_structure")
builder.add_edge("examine_file_structure", "generate_code_guidance")
builder.add_edge("generate_code_guidance", "execute_guided_analysis")
builder.add_edge("execute_guided_analysis", END)
return builder.compile()
# Create the graph instance
guided_analysis_graph = build_guided_analysis_graph()
def analyze_user_question(question: str) -> dict:
"""
Analyze the user's question to understand their intent and focus areas.
This helps generate more targeted code guidance.
"""
question_lower = question.lower()
# Determine primary intent
intent = "general"
if any(word in question_lower for word in ["security", "threat", "attack", "login", "auth", "breach", "suspicious"]):
intent = "security"
elif any(word in question_lower for word in ["performance", "slow", "fast", "speed", "time", "latency", "bottleneck"]):
intent = "performance"
elif any(word in question_lower for word in ["error", "exception", "fail", "problem", "issue", "bug"]):
intent = "error_analysis"
elif any(word in question_lower for word in ["pattern", "trend", "frequent", "common", "anomal", "unusual"]):
intent = "pattern_analysis"
elif any(word in question_lower for word in ["statistic", "count", "average", "distribution", "summary", "metrics"]):
intent = "statistical"
elif any(word in question_lower for word in ["time", "temporal", "timeline", "chronological", "over time"]):
intent = "temporal"
# Identify focus areas
focus_areas = []
if "ip" in question_lower or "address" in question_lower:
focus_areas.append("ip_analysis")
if "user" in question_lower or "account" in question_lower:
focus_areas.append("user_analysis")
if "endpoint" in question_lower or "api" in question_lower or "url" in question_lower:
focus_areas.append("endpoint_analysis")
if "database" in question_lower or "query" in question_lower or "db" in question_lower:
focus_areas.append("database_analysis")
if "network" in question_lower or "connection" in question_lower:
focus_areas.append("network_analysis")
# Determine analysis type
analysis_type = "comprehensive"
if any(word in question_lower for word in ["find", "identify", "detect", "search"]):
analysis_type = "detection"
elif any(word in question_lower for word in ["show", "list", "display", "get"]):
analysis_type = "extraction"
elif any(word in question_lower for word in ["analyze", "examine", "investigate"]):
analysis_type = "deep_analysis"
elif any(word in question_lower for word in ["count", "how many", "frequency"]):
analysis_type = "quantitative"
elif any(word in question_lower for word in ["compare", "correlation", "relationship"]):
analysis_type = "comparative"
# Extract key terms
key_terms = []
import re
# Extract quoted terms
quoted_terms = re.findall(r'"([^"]*)"', question)
key_terms.extend(quoted_terms)
# Extract technical terms
tech_terms = re.findall(r'\b(?:login|logout|auth|api|endpoint|database|query|ip|user|error|exception|timeout|response|request|status|code)\b', question_lower)
key_terms.extend(tech_terms)
return {
"intent": intent,
"focus_areas": focus_areas if focus_areas else ["general"],
"analysis_type": analysis_type,
"key_terms": list(set(key_terms)) # Remove duplicates
}
async def analyze_file_with_guidance(file_path: str, analysis_query: str = None) -> str:
"""
Main function to analyze a file using the guided approach.
Args:
file_path: Path to the file to analyze
analysis_query: Optional specific analysis request
Returns:
Final analysis results
"""
print(f"π Starting guided analysis for: {file_path}")
# Initialize state
initial_state = {
"file_path": file_path,
"analysis_query": analysis_query
}
# Run the graph
try:
final_state = await guided_analysis_graph.ainvoke(initial_state)
return final_state.get("final_analysis", "Analysis completed but no results generated.")
except Exception as e:
return f"β Guided analysis failed: {str(e)}"
def analyze_file_with_guidance_sync(file_path: str, analysis_query: str = None) -> str:
"""
Synchronous wrapper for the guided analysis.
"""
return asyncio.run(analyze_file_with_guidance(file_path, analysis_query))
# Example usage and testing
if __name__ == "__main__":
import sys
if len(sys.argv) > 1:
test_file_path = sys.argv[1]
test_query = sys.argv[2] if len(sys.argv) > 2 else None
print(f"π§ͺ Testing guided analysis with: {test_file_path}")
if test_query:
print(f"π Custom query: {test_query}")
result = analyze_file_with_guidance_sync(test_file_path, test_query)
print("\n" + "="*80)
print("GUIDED ANALYSIS RESULT:")
print("="*80)
print(result)
else:
print("Usage: python graph.py <file_path> [analysis_query]")
print("\nThis will run the guided analysis workflow that:")
print("1. π Examines file structure (first ~20 lines)")
print("2. π― Generates specific code guidance")
print("3. π Executes analysis with improved context")
|