ai-puppy commited on
Commit
4e7bcf3
Β·
1 Parent(s): 3c3b761

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -42
app.py CHANGED
@@ -132,51 +132,51 @@ with gr.Blocks(title="DataForge - AI-Powered File Analysis") as demo:
132
  inputs=[user_question],
133
  outputs=[analysis_output]
134
  )
135
-
136
- with gr.Tab("πŸ“Š Analysis Examples"):
137
- gr.Markdown("## πŸ’‘ Example Questions by File Type")
 
 
 
 
 
 
 
 
138
 
139
- with gr.Accordion("πŸ” Security Analysis Questions", open=False):
140
- gr.Markdown("""
141
- **For Log Files:**
142
- - "Find any failed login attempts and suspicious IP addresses"
143
- - "Identify potential security threats or anomalies"
144
- - "Show me authentication errors and user access patterns"
145
- - "Are there any brute force attacks or repeated failures?"
146
-
147
- **For Access Logs:**
148
- - "Detect unusual access patterns or potential intrusions"
149
- - "Find requests with suspicious user agents or payloads"
150
- - "Identify high-frequency requests from single IPs"
151
- """)
152
 
153
- with gr.Accordion("⚑ Performance Analysis Questions", open=False):
154
- gr.Markdown("""
155
- **For Application Logs:**
156
- - "Which API endpoints are slowest and why?"
157
- - "Find performance bottlenecks and response time issues"
158
- - "Show me timeout errors and failed requests"
159
- - "What are the peak usage times and load patterns?"
160
-
161
- **For System Logs:**
162
- - "Identify resource usage spikes and memory issues"
163
- - "Find database query performance problems"
164
- - "Show me error rates and system health indicators"
165
- """)
166
 
167
- with gr.Accordion("πŸ“ˆ Data Analysis Questions", open=False):
168
- gr.Markdown("""
169
- **For CSV/Data Files:**
170
- - "Analyze data distribution and find statistical insights"
171
- - "Identify outliers and anomalies in the dataset"
172
- - "What correlations exist between different columns?"
173
- - "Generate a comprehensive data quality report"
174
-
175
- **For JSON Files:**
176
- - "Parse the structure and extract key information"
177
- - "Find patterns in nested data and relationships"
178
- - "Summarize the main data points and values"
179
- """)
180
 
181
  if __name__ == "__main__":
182
  demo.launch()
 
132
  inputs=[user_question],
133
  outputs=[analysis_output]
134
  )
135
+
136
+ gr.Markdown("---")
137
+ gr.Markdown("## πŸ’‘ Example Questions by File Type")
138
+
139
+ with gr.Accordion("πŸ” Security Analysis Questions", open=False):
140
+ gr.Markdown("""
141
+ **For Log Files:**
142
+ - "Find any failed login attempts and suspicious IP addresses"
143
+ - "Identify potential security threats or anomalies"
144
+ - "Show me authentication errors and user access patterns"
145
+ - "Are there any brute force attacks or repeated failures?"
146
 
147
+ **For Access Logs:**
148
+ - "Detect unusual access patterns or potential intrusions"
149
+ - "Find requests with suspicious user agents or payloads"
150
+ - "Identify high-frequency requests from single IPs"
151
+ """)
152
+
153
+ with gr.Accordion("⚑ Performance Analysis Questions", open=False):
154
+ gr.Markdown("""
155
+ **For Application Logs:**
156
+ - "Which API endpoints are slowest and why?"
157
+ - "Find performance bottlenecks and response time issues"
158
+ - "Show me timeout errors and failed requests"
159
+ - "What are the peak usage times and load patterns?"
160
 
161
+ **For System Logs:**
162
+ - "Identify resource usage spikes and memory issues"
163
+ - "Find database query performance problems"
164
+ - "Show me error rates and system health indicators"
165
+ """)
166
+
167
+ with gr.Accordion("πŸ“ˆ Data Analysis Questions", open=False):
168
+ gr.Markdown("""
169
+ **For CSV/Data Files:**
170
+ - "Analyze data distribution and find statistical insights"
171
+ - "Identify outliers and anomalies in the dataset"
172
+ - "What correlations exist between different columns?"
173
+ - "Generate a comprehensive data quality report"
174
 
175
+ **For JSON Files:**
176
+ - "Parse the structure and extract key information"
177
+ - "Find patterns in nested data and relationships"
178
+ - "Summarize the main data points and values"
179
+ """)
 
 
 
 
 
 
 
 
180
 
181
  if __name__ == "__main__":
182
  demo.launch()