File size: 28,799 Bytes
75c12e8 13fc164 eaab152 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 d4f5d63 75c12e8 3cac2a1 13fc164 75c12e8 b478961 13fc164 d4f5d63 75c12e8 3cac2a1 13fc164 75c12e8 d4f5d63 eaab152 d4f5d63 13fc164 75c12e8 3cac2a1 75c12e8 13fc164 75c12e8 70255e6 75c12e8 13fc164 75c12e8 d4f5d63 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 3cac2a1 d4f5d63 eaab152 d4f5d63 eaab152 d4f5d63 70255e6 eaab152 3cac2a1 eaab152 d4f5d63 eaab152 d4f5d63 eaab152 d4f5d63 3cac2a1 d4f5d63 75c12e8 3cac2a1 75c12e8 d4f5d63 13fc164 75c12e8 d4f5d63 13fc164 75c12e8 3cac2a1 d4f5d63 13fc164 75c12e8 d4f5d63 13fc164 75c12e8 d4f5d63 13fc164 75c12e8 d4f5d63 13fc164 75c12e8 d4f5d63 75c12e8 d4f5d63 75c12e8 d4f5d63 75c12e8 3cac2a1 e0359a1 13fc164 75c12e8 e0359a1 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 13fc164 75c12e8 44e9e1c 75c12e8 44e9e1c 13fc164 44e9e1c 13fc164 44e9e1c 13fc164 44e9e1c 13fc164 44e9e1c 13fc164 44e9e1c 13fc164 44e9e1c 13fc164 44e9e1c e0359a1 44e9e1c e0359a1 44e9e1c e0359a1 44e9e1c e0359a1 44e9e1c e0359a1 44e9e1c 75c12e8 13fc164 44e9e1c 75c12e8 13fc164 44e9e1c 75c12e8 44e9e1c 75c12e8 44e9e1c 75c12e8 44e9e1c 75c12e8 13fc164 75c12e8 44e9e1c 75c12e8 44e9e1c 75c12e8 13fc164 44e9e1c 75c12e8 44e9e1c 75c12e8 44e9e1c d4f5d63 eaab152 70255e6 d4f5d63 eaab152 44e9e1c 75c12e8 13fc164 d4f5d63 75c12e8 3cac2a1 44e9e1c 3cac2a1 44e9e1c 3cac2a1 44e9e1c 3cac2a1 44e9e1c 3cac2a1 44e9e1c 3cac2a1 44e9e1c 3cac2a1 13fc164 75c12e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
## Gradio MCP server that launches modal finetune
import gradio as gr
import requests
import json
import time
import subprocess
import os
import base64
from io import BytesIO
from PIL import Image
from typing import Optional, Dict, Any, Tuple, List
# Configuration - Update these URLs to match your deployed Modal app
# MODAL_BASE_URL = "https://stillerman--jason-lora-flux" # Update with your actual Modal app URL
# START_TRAINING_URL = f"{MODAL_BASE_URL}-api-start-training.modal.run"
# JOB_STATUS_URL = f"{MODAL_BASE_URL}-api-job-status.modal.run"
def start_training(
dataset_id: str,
hf_token: str,
output_repo: str,
start_training_url: str,
instance_name: Optional[str] = None,
class_name: Optional[str] = None,
max_train_steps: int = 500
) -> tuple[str, str]:
"""
Start a LoRA training job for Flux image generation model.
This function initiates a LoRA (Low-Rank Adaptation) training job on a dataset of images.
It sends a request to a Modal API endpoint to start the training process.
Parameters:
- dataset_id (str, required): The HuggingFace dataset ID containing training 5-10 images, format: "username/dataset-name"
- hf_token (str, required): HuggingFace access token with read permissions, format: "hf_xxxxxxxxxxxx"
- output_repo (str, required): HuggingFace repository where trained LoRA will be uploaded, format: "username/repo-name"
- start_training_url (str, required): Modal API endpoint for starting training, format: "https://modal-app-url-api-start-training.modal.run". If the app is already deployed, this can be found in the Modal [dashboard](https://modal.com/apps/) . Otherwise, the app can get deployed with the deploy_for_user function.
- instance_name (str, optional): Name of the subject being trained (e.g., 'Fluffy', 'MyDog', 'John')
- class_name (str, optional): Class category of the subject (e.g., 'person', 'dog', 'cat', 'building')
- max_train_steps (int, optional): Number of training steps, range 100-2000, default 500
Returns:
- tuple[str, str]: (status_message, job_id)
- status_message: Human-readable status with training details or error message
- job_id: Unique identifier for the training job, empty string if failed
Example usage:
status, job_id = start_training(
dataset_id="myuser/dog-photos",
hf_token="hf_abcdef123456",
output_repo="myuser/my-dog-lora",
instance_name="Fluffy",
class_name="dog",
max_train_steps=500
)
"""
if not dataset_id or not hf_token or not output_repo or not start_training_url:
return "β Error: Dataset ID, HuggingFace token, output repo, and start training URL are required", ""
payload = {
"dataset_id": dataset_id,
"hf_token": hf_token,
"output_repo": output_repo,
"max_train_steps": max_train_steps
}
# Add optional parameters if provided
if instance_name and instance_name.strip():
payload["instance_name"] = instance_name.strip()
if class_name and class_name.strip():
payload["class_name"] = class_name.strip()
try:
response = requests.post(
start_training_url,
json=payload,
headers={"Content-Type": "application/json"},
timeout=30
)
if response.status_code == 200:
result = response.json()
if result.get("status") == "started":
job_id = result.get("job_id", "")
message = f"β
Training started successfully!\n\n"
message += f"**Job ID:** `{job_id}`\n"
message += f"**Dataset:** {dataset_id}\n"
message += f"**Output Repo:** {output_repo}\n"
message += f"**Training Steps:** {max_train_steps}\n\n"
message += "Copy the Job ID to check status below."
return message, job_id
else:
return f"β Error: {result.get('message', 'Unknown error')}", ""
else:
return f"β HTTP Error {response.status_code}: {response.text}", ""
except requests.exceptions.Timeout:
return "β Error: Request timed out. The service might be starting up.", ""
except requests.exceptions.RequestException as e:
return f"β Error: Failed to connect to training service: {str(e)}", ""
except json.JSONDecodeError:
return "β Error: Invalid response from server", ""
def check_job_status(job_id: str, job_status_url: str) -> tuple[str, List[Image.Image]]:
"""
Check the current status of a LoRA training job or image generation job.
This function queries the Modal API to get the current status of a training job
using its unique job ID. It returns detailed information about the job progress.
Note that if we are invoking this function with MCP, the user cannot neccecarily see the images
in the tool call, so you will have to render them again in the chat.
**MCP Client Limitation:** Due to MCP client constraints, we cannot render a gallery of images in the chat.
The MCP client should render these URLs as clickable markdown links when possible.
Parameters:
- job_id (str, required): The unique job identifier returned from start_training or generate_images function
- job_status_url (str, required): Modal API endpoint for checking job status, format: "https://modal-app-url-api-job-status.modal.run". If the app is already deployed, this can be found in the Modal [dashboard](https://modal.com/apps/) . Otherwise, the app can get deployed with the deploy_for_user function.
Returns:
- tuple[str, List[Image.Image]]: (status_message, all_images)
- status_message: Detailed status message containing job information
- all_images: List of PIL Image objects if images are available, empty list otherwise
Possible status values:
- "completed": Job finished successfully
- "running": Job is still in progress
- "failed": Job failed due to an error
- "error": System error occurred
Example usage:
status_info, first_image = check_job_status("job_12345abcdef", "https://modal-app-url-api-job-status.modal.run")
"""
if not job_id or not job_id.strip():
return "β Error: Job ID is required", []
try:
response = requests.get(
job_status_url,
params={"job_id": job_id.strip()},
timeout=10
)
if response.status_code == 200:
result = response.json()
status = result.get("status", "unknown")
if status == "completed":
training_result = result.get("result", {})
if isinstance(training_result, dict):
# Check if this is an image generation job or training job
if "images" in training_result:
# Image generation job
message = "π **Image Generation Completed!**\n\n"
message += f"**Status:** {training_result.get('status', 'completed')}\n"
message += f"**Message:** {training_result.get('message', 'Generation finished')}\n"
if training_result.get('lora_repo'):
message += f"**LoRA Used:** {training_result['lora_repo']}\n"
images_data = training_result.get('images', [])
all_images = []
if images_data:
message += f"**Images Generated:** {len(images_data)}\n\n"
# Show all prompts
message += "**Generated Images:**\n"
for i, img_data in enumerate(images_data):
prompt = img_data.get('prompt', f'Image {i+1}')
message += f"**{i+1}.** {prompt}\n"
# Decode and return all images
for i, img_data in enumerate(images_data):
base64_data = img_data.get('image', '')
if base64_data:
try:
image_bytes = base64.b64decode(base64_data)
image = Image.open(BytesIO(image_bytes))
all_images.append(image)
except Exception as e:
print(f"Error decoding image {i+1}: {e}")
message += f"\n**Error loading image {i+1}:** {e}"
message += f"\n**Displaying all {len(all_images)} generated images**"
return message, all_images
else:
# Training job
message = "π **Training Completed!**\n\n"
message += f"**Status:** {training_result.get('status', 'completed')}\n"
message += f"**Message:** {training_result.get('message', 'Training finished')}\n"
if training_result.get('dataset_used'):
message += f"**Dataset Used:** {training_result['dataset_used']}\n"
if training_result.get('training_steps'):
message += f"**Training Steps:** {training_result['training_steps']}\n"
if training_result.get('training_prompt'):
message += f"**Training Prompt:** {training_result['training_prompt']}\n"
return message, []
else:
message = "π **Job Completed!**\n\n"
message += f"**Result:** {training_result}"
return message, []
elif status == "running":
return f"π **Job in Progress**\n\nThe job is still running. Check back in a few minutes.", []
elif status == "failed":
error_msg = result.get("message", "Job failed with unknown error")
return f"β **Job Failed**\n\n**Error:** {error_msg}", []
elif status == "error":
error_msg = result.get("message", "Unknown error occurred")
return f"β **Error**\n\n**Message:** {error_msg}", []
else:
return f"β **Unknown Status**\n\n**Status:** {status}\n**Response:** {json.dumps(result, indent=2)}", []
else:
return f"β HTTP Error {response.status_code}: {response.text}", []
except requests.exceptions.Timeout:
return "β Error: Request timed out", []
except requests.exceptions.RequestException as e:
return f"β Error: Failed to connect to status service: {str(e)}", []
except json.JSONDecodeError:
return "β Error: Invalid response from server", []
def generate_images(
prompts_json: str,
lora_repo: str,
hf_token: str,
generate_images_url: str
) -> tuple[str, str]:
"""
Generate images using a trained LoRA model.
This function sends a request to generate images using a previously trained LoRA model.
It takes a list of prompts and generates images for each one.
Parameters:
- prompts_json (str, required): JSON string containing list of prompts, e.g. '["prompt1", "prompt2"]'
- lora_repo (str, required): HuggingFace repository containing the trained LoRA, format: "username/lora-name"
- hf_token (str, required): HuggingFace access token with read permissions, format: "hf_xxxxxxxxxxxx"
- generate_images_url (str, required): Modal API endpoint for generating images, format: "https://modal-app-url-api-generate-images.modal.run"
Returns:
- tuple[str, str]: (status_message, job_id)
- status_message: Human-readable status with generation details or error message
- job_id: Unique identifier for the generation job, empty string if failed
Example usage:
status, job_id = generate_images(
prompts_json='["a photo of a dog", "a photo of a cat"]',
lora_repo="myuser/my-dog-lora",
hf_token="hf_abcdef123456",
generate_images_url="https://modal-app-url-api-generate-images.modal.run"
)
"""
if not prompts_json or not lora_repo or not hf_token or not generate_images_url:
return "β Error: All fields are required", ""
try:
# Parse the prompts JSON
prompts = json.loads(prompts_json.strip())
if not isinstance(prompts, list) or len(prompts) == 0:
return "β Error: Prompts must be a non-empty JSON list", ""
except json.JSONDecodeError as e:
return f"β Error: Invalid JSON format: {str(e)}", ""
payload = {
"hf_token": hf_token,
"lora_repo": lora_repo,
"prompts": prompts,
"num_inference_steps": 30, # Fixed at 30
"guidance_scale": 7.5, # Default value
"width": 512, # Default value
"height": 512 # Default value
}
try:
response = requests.post(
generate_images_url,
json=payload,
headers={"Content-Type": "application/json"},
timeout=30
)
if response.status_code == 200:
result = response.json()
if result.get("status") == "started":
job_id = result.get("job_id", "")
message = f"β
Image generation started successfully!\n\n"
message += f"**Job ID:** `{job_id}`\n"
message += f"**LoRA Model:** {lora_repo}\n"
message += f"**Number of Prompts:** {len(prompts)}\n"
message += f"**Inference Steps:** 30\n\n"
message += "Copy the Job ID to check status below."
return message, job_id
else:
return f"β Error: {result.get('message', 'Unknown error')}", ""
else:
return f"β HTTP Error {response.status_code}: {response.text}", ""
except requests.exceptions.Timeout:
return "β Error: Request timed out. The service might be starting up.", ""
except requests.exceptions.RequestException as e:
return f"β Error: Failed to connect to generation service: {str(e)}", ""
except json.JSONDecodeError:
return "β Error: Invalid response from server", ""
def check_model_access(hf_token: str) -> str:
"""
Check if the user has access to the gated FLUX.1-dev model.
This function verifies that the user's HuggingFace token has access to the
gated FLUX.1-dev model required for LoRA training. This has to be done before we can deploy the endpoint.
Parameters:
- hf_token (str, required): HuggingFace access token, format: "hf_xxxxxxxxxxxx"
Returns:
- str: Status message indicating access status and next steps
Example usage:
status = check_model_access("hf_abcdef123456")
"""
if not hf_token or not hf_token.strip():
return "β Error: HuggingFace token is required"
try:
# Try to import huggingface_hub - if not available, give instructions
try:
from huggingface_hub import HfApi
except ImportError:
return "β Error: huggingface_hub not installed. Please run: pip install huggingface_hub"
# Initialize HF API with token
api = HfApi(token=hf_token.strip())
model_name = "black-forest-labs/FLUX.1-dev"
try:
# Attempt to get repository info - this will fail if no access
repo_info = api.repo_info(repo_id=model_name, repo_type="model")
message = "β
**Access Confirmed!**\n\n"
message += f"You have access to the **{model_name}** model.\n"
message += "You can proceed with LoRA training."
return message
except Exception as access_error:
# Check if it's specifically an access/permission error
error_str = str(access_error).lower()
if any(keyword in error_str for keyword in ["gated", "access", "permission", "401", "403", "repo_not_found"]):
message = "π **Access Required**\n\n"
message += f"You don't have access to the gated **{model_name}** model.\n\n"
message += "**To gain access:**\n"
message += f"1. Visit: https://huggingface.co/{model_name}\n"
message += "2. Click **'Agree and access repository'**\n"
message += "3. Accept the license terms\n"
message += "4. Wait a few minutes for access to be granted\n"
message += "5. Come back and check access again\n\n"
message += "**Note:** You need to be logged into HuggingFace with the same account used to create your access token."
return message
else:
# Some other error occurred
return f"β **Error checking access**\n\nError details: {str(access_error)}"
except Exception as e:
return f"β **Unexpected error**\n\nFailed to check model access: {str(e)}"
def deploy_for_user(token_id: str, token_secret: str) -> Tuple[str, str, str]:
"""
Deploy a Modal endpoint for a user using their API key. Unless the user has already done this, this must be done before they can train a LoRA.
This function deploys a Modal script using the user's Modal API token ID and secret,
allowing them to set up their own training endpoint. You can create them at https://modal.com/settings/tokens
Parameters:
- token_id (str, required): The user's Modal token ID
- token_secret (str, required): The user's Modal token secret
Returns:
- tuple[str, str, str]: (status_message, stdout, stderr)
- status_message: Human-readable deployment status
- stdout: Standard output from the modal deploy command
- stderr: Standard error output from the modal deploy command
Example usage:
status, out, err = deploy_for_user("ak-1234567890abcdef", "as-secret123...")
"""
if not token_id or not token_id.strip():
return "β Error: Modal token ID is required", "", ""
if not token_secret or not token_secret.strip():
return "β Error: Modal token secret is required", "", ""
script_path = "diffusers_lora_finetune.py"
# Check if the script file exists
if not os.path.exists(script_path):
return f"β Error: Script file '{script_path}' not found", "", ""
try:
# Set up environment with user's Modal tokens
env = os.environ.copy()
env["MODAL_TOKEN_ID"] = token_id.strip()
env["MODAL_TOKEN_SECRET"] = token_secret.strip()
# Run modal deploy command
result = subprocess.run(
["modal", "deploy", script_path],
env=env,
capture_output=True,
text=True,
timeout=300 # 5 minute timeout
)
if result.returncode == 0:
status_message = "β
**Deployment Successful!**\n\n"
status_message += "Your Modal endpoint has been deployed successfully.\n"
status_message += "Check the output below for your endpoint URL."
return status_message, result.stdout, result.stderr or "No errors"
else:
status_message = "β **Deployment Failed**\n\n"
status_message += f"Exit code: {result.returncode}\n"
status_message += "Check the error output below for details."
return status_message, result.stdout or "No output", result.stderr or "No error details"
except subprocess.TimeoutExpired:
return "β Error: Deployment timed out after 5 minutes", "", "Timeout error"
except FileNotFoundError:
return "β Error: 'modal' command not found. Please install Modal CLI first.", "", "Modal CLI not installed"
except Exception as e:
return f"β Error: Deployment failed: {str(e)}", "", str(e)
# Create simplified single-page Gradio interface
with gr.Blocks(title="FluxFoundry LoRA Training", theme=gr.themes.Soft()) as app:
gr.Markdown(
"""
# π¨ FluxFoundry LoRA Training
Train custom LoRA models for Flux image generation and check training status.
# β οΈ SEE [DEMO VIDEO](https://www.loom.com/share/ed054eb997024730b129d8d7f48981d9)
[Installation instruction](https://github.com/stillerman/fluxfoundry)
"""
)
# Deployment Section
gr.Markdown("## π Deploy Your Modal Endpoint")
gr.Markdown("""
First, deploy your own Modal endpoint using your Modal API key. This will create your personal training service.
**Requirements:**
- Modal account and API key
- The `diffusers_lora_finetune.py` script in your current directory
""")
with gr.Row():
with gr.Column():
token_id = gr.Textbox(
label="Modal Token ID",
placeholder="ak-1234567890abcdef...",
type="password",
info="Your Modal token ID (found in Modal dashboard)"
)
token_secret = gr.Textbox(
label="Modal Token Secret",
placeholder="as-secret123...",
type="password",
info="Your Modal token secret"
)
with gr.Column():
deploy_btn = gr.Button("π Deploy Endpoint", variant="primary", size="lg")
deploy_status = gr.Markdown(label="Deployment Status")
with gr.Row():
with gr.Column():
deploy_stdout = gr.Textbox(
label="Deployment Output",
lines=10,
max_lines=15,
interactive=False,
info="Standard output from modal deploy"
)
with gr.Column():
deploy_stderr = gr.Textbox(
label="Deployment Errors",
lines=10,
max_lines=15,
interactive=False,
info="Error output (if any)"
)
deploy_btn.click(
fn=deploy_for_user,
inputs=[token_id, token_secret],
outputs=[deploy_status, deploy_stdout, deploy_stderr]
)
gr.Markdown("---")
# Model Access Check Section
gr.Markdown("## π Check Model Access")
gr.Markdown("""
Before training, verify that your HuggingFace token has access to the gated FLUX.1-dev model.
""")
with gr.Row():
with gr.Column():
hf_token_check = gr.Textbox(
label="HuggingFace Token",
placeholder="hf_...",
type="password",
info="Your HuggingFace access token"
)
with gr.Column():
check_access_btn = gr.Button("π Check Access", variant="secondary", size="lg")
access_status = gr.Markdown(label="Access Status")
check_access_btn.click(
fn=check_model_access,
inputs=[hf_token_check],
outputs=[access_status]
)
gr.Markdown("---")
# Training Section
gr.Markdown("## π― Start Training")
gr.Markdown("After deploying your endpoint above, use it to train LoRA models.")
with gr.Row():
with gr.Column():
dataset_id = gr.Textbox(
label="HuggingFace Dataset ID",
placeholder="username/dataset-name",
info="The HuggingFace dataset containing your training images"
)
hf_token = gr.Textbox(
label="HuggingFace Token",
placeholder="hf_...",
type="password",
info="Your HuggingFace access token with read permissions"
)
output_repo = gr.Textbox(
label="Output Repository",
placeholder="username/my-lora-model",
info="HuggingFace repository where the trained LoRA will be uploaded"
)
start_training_url = gr.Textbox(
label="Start Training URL",
placeholder="https://modal-app-url-api-start-training.modal.run",
info="Modal API endpoint for starting training"
)
with gr.Column():
instance_name = gr.Textbox(
label="Instance Name (Optional)",
placeholder="subject",
info="Name of the subject being trained (e.g., 'Fluffy', 'MyDog')"
)
class_name = gr.Textbox(
label="Class Name (Optional)",
placeholder="person",
info="Class of the subject (e.g., 'person', 'dog', 'cat')"
)
max_train_steps = gr.Slider(
minimum=100,
maximum=2000,
value=500,
step=50,
label="Max Training Steps",
info="Number of training steps (more steps = longer training)"
)
start_btn = gr.Button("π Start Training", variant="primary", size="lg")
with gr.Row():
training_output = gr.Markdown(label="Training Status")
job_id_output = gr.Textbox(
label="Job ID",
placeholder="Copy this ID to check status",
interactive=False
)
start_btn.click(
fn=start_training,
inputs=[dataset_id, hf_token, output_repo, start_training_url, instance_name, class_name, max_train_steps],
outputs=[training_output, job_id_output]
)
# Status Section
gr.Markdown("## π Check Status")
job_id_input = gr.Textbox(
label="Job ID",
placeholder="Paste your job ID here",
info="The Job ID returned when you started training"
)
job_status_url = gr.Textbox(
label="Job Status URL",
placeholder="https://modal-app-url-api-job-status.modal.run",
info="Modal API endpoint for checking job status"
)
with gr.Row():
status_btn = gr.Button("π Check Status", variant="secondary")
status_output = gr.Markdown(label="Job Status")
# Add gallery component for displaying all generated images
generated_images = gr.Gallery(
label="Generated Images",
show_label=True,
interactive=False,
visible=True,
columns=2,
rows=2,
height="auto"
)
status_btn.click(
fn=check_job_status,
inputs=[job_id_input, job_status_url],
outputs=[status_output, generated_images]
)
gr.Markdown("---")
# Image Generation Section
gr.Markdown("## π¨ Generate Images")
gr.Markdown("Use your trained LoRA model to generate images from prompts.")
with gr.Row():
with gr.Column():
prompts_json = gr.Textbox(
label="Prompts (JSON List)",
placeholder='["a photo of a dog in a park", "a photo of a cat on a sofa"]',
lines=4,
info="JSON array of text prompts for image generation"
)
lora_repo = gr.Textbox(
label="LoRA Repository",
placeholder="username/my-lora-model",
info="HuggingFace repository containing your trained LoRA"
)
with gr.Column():
hf_token_gen = gr.Textbox(
label="HuggingFace Token",
placeholder="hf_...",
type="password",
info="Your HuggingFace access token"
)
generate_images_url = gr.Textbox(
label="Generate Images URL",
placeholder="https://modal-app-url-api-generate-images.modal.run",
info="Modal API endpoint for image generation"
)
generate_btn = gr.Button("π¨ Generate Images", variant="primary", size="lg")
with gr.Row():
generation_output = gr.Markdown(label="Generation Status")
generation_job_id_output = gr.Textbox(
label="Generation Job ID",
placeholder="Copy this ID to check status",
interactive=False
)
generate_btn.click(
fn=generate_images,
inputs=[prompts_json, lora_repo, hf_token_gen, generate_images_url],
outputs=[generation_output, generation_job_id_output]
)
if __name__ == "__main__":
print("π¨ Starting FluxFoundry Training Interface...")
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
mcp_server=True
)
|