File size: 19,054 Bytes
3fbcf45
 
 
 
 
 
 
75c12e8
3fbcf45
 
 
13fc164
3fbcf45
 
 
75c12e8
 
3fbcf45
 
 
75c12e8
3fbcf45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75c12e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cac2a1
 
75c12e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cac2a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fc164
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# ---
# deploy: true
# ---


from dataclasses import dataclass
from pathlib import Path
from typing import Optional

import modal

app = modal.App(name="dreambooth-lora-flux")

image = modal.Image.debian_slim(python_version="3.10").pip_install(
    "accelerate==0.31.0",
    "datasets==3.6.0",
    "pillow",
    "fastapi[standard]==0.115.4",
    "ftfy~=6.1.0",
    "gradio~=5.5.0",
    "huggingface-hub==0.32.4",
    "hf_transfer==0.1.8",
    "numpy<2",
    "peft==0.11.1",
    "pydantic==2.9.2",
    "sentencepiece>=0.1.91,!=0.1.92",
    "smart_open~=6.4.0",
    "starlette==0.41.2",
    "transformers~=4.41.2",
    "torch~=2.2.0",
    "torchvision~=0.16",
    "triton~=2.2.0",
    "wandb==0.17.6",
)


GIT_SHA = "e649678bf55aeaa4b60bd1f68b1ee726278c0304"  # specify the commit to fetch

image = (
    image.apt_install("git")
    # Perform a shallow fetch of just the target `diffusers` commit, checking out
    # the commit in the container's home directory, /root. Then install `diffusers`
    .run_commands(
        "cd /root && git init .",
        "cd /root && git remote add origin https://github.com/huggingface/diffusers",
        f"cd /root && git fetch --depth=1 origin {GIT_SHA} && git checkout {GIT_SHA}",
        "cd /root && pip install -e .",
    )
)

# ### Configuration with `dataclass`es

# Machine learning apps often have a lot of configuration information.
# We collect up all of our configuration into dataclasses to avoid scattering special/magic values throughout code.


@dataclass
class SharedConfig:
    """Configuration information shared across project components."""

    # The instance name is the "proper noun" we're teaching the model
    instance_name: str = "Qwerty"
    # That proper noun is usually a member of some class (person, bird),
    # and sharing that information with the model helps it generalize better.
    class_name: str = "Golden Retriever"
    # identifier for pretrained models on Hugging Face
    model_name: str = "black-forest-labs/FLUX.1-dev"


# ### Storing data created by our app with `modal.Volume`

# The tools we've used so far work well for fetching external information,
# which defines the environment our app runs in,
# but what about data that we create or modify during the app's execution?
# A persisted [`modal.Volume`](https://modal.com/docs/guide/volumes) can store and share data across Modal Apps and Functions.

# We'll use one to store both the original and fine-tuned weights we create during training
# and then load them back in for inference.



image = image.env(
    {"HF_HUB_ENABLE_HF_TRANSFER": "1"}  # turn on faster downloads from HF
)

def load_images_from_hf_dataset(dataset_id: str, hf_token: str) -> Path:
    """Load images from a HuggingFace dataset."""
    import PIL.Image
    from datasets import load_dataset

    img_path = Path("/img")
    img_path.mkdir(parents=True, exist_ok=True)
    
    # Load dataset from HuggingFace
    dataset = load_dataset(dataset_id, token=hf_token, split="train")
    
    for ii, example in enumerate(dataset):
        # Assume the dataset has an 'image' column
        if 'image' in example:
            image = example['image']
            if isinstance(image, PIL.Image.Image):
                image.save(img_path / f"{ii}.png")
            else:
                # Handle other image formats
                pil_image = PIL.Image.open(image)
                pil_image.save(img_path / f"{ii}.png")
        else:
            print(f"Warning: No 'image' field found in dataset example {ii}")
    
    print(f"{len(dataset)} images loaded from HuggingFace dataset")
    return img_path


# ## Stateless API Training Function

@dataclass
class APITrainConfig:
    """Configuration for the API training function."""
    
    # Basic model info
    model_name: str = "black-forest-labs/FLUX.1-dev"
    
    # Training prompt components
    instance_name: str = "subject"
    class_name: str = "person"
    prefix: str = "a photo of"
    postfix: str = ""
    
    # Training hyperparameters
    resolution: int = 512
    train_batch_size: int = 3
    rank: int = 16  # lora rank
    gradient_accumulation_steps: int = 1
    learning_rate: float = 4e-4
    lr_scheduler: str = "constant"
    lr_warmup_steps: int = 0
    max_train_steps: int = 500
    checkpointing_steps: int = 1000
    seed: int = 117


@app.function(
    image=image,
    gpu="A100-80GB",  # fine-tuning is VRAM-heavy and requires a high-VRAM GPU
    timeout=3600,  # 60 minutes
)
def train_lora_stateless(
    dataset_id: str,
    hf_token: str,
    output_repo: str,
    instance_name: Optional[str] = None,
    class_name: Optional[str] = None,
    max_train_steps: int = 500,
):
    """
    Stateless LoRA training function that reads from HF dataset and uploads to HF repo.
    
    Args:
        dataset_id: HuggingFace dataset ID (e.g., "username/dataset-name")
        hf_token: HuggingFace API token
        output_repo: HuggingFace repository to upload the trained LoRA to
        instance_name: Name of the subject (optional, defaults to "subject")
        class_name: Class of the subject (optional, defaults to "person")
        max_train_steps: Number of training steps
    """
    import subprocess
    import tempfile
    from pathlib import Path
    
    import torch
    from accelerate.utils import write_basic_config
    from diffusers import DiffusionPipeline
    from huggingface_hub import snapshot_download, upload_folder, login, create_repo
    
    # Login to HuggingFace
    login(token=hf_token)
    
    # Create temporary directories
    with tempfile.TemporaryDirectory() as temp_dir:
        temp_path = Path(temp_dir)
        model_dir = temp_path / "model"
        output_dir = temp_path / "output"
        
        # Download base model
        print("πŸ“₯ Downloading base model...")
        snapshot_download(
            "black-forest-labs/FLUX.1-dev",
            local_dir=str(model_dir),
            ignore_patterns=["*.pt", "*.bin"],  # using safetensors
            token=hf_token
        )
        
        # Load and validate model
        DiffusionPipeline.from_pretrained(str(model_dir), torch_dtype=torch.bfloat16)
        print("βœ… Base model loaded successfully")
        
        # Load training images from HF dataset
        print(f"πŸ“₯ Loading images from dataset: {dataset_id}")
        img_path = load_images_from_hf_dataset(dataset_id, hf_token)
        
        # Set up training configuration
        config = APITrainConfig(
            instance_name=instance_name or "subject",
            class_name=class_name or "person", 
            max_train_steps=max_train_steps
        )
        
        # Set up hugging face accelerate library for fast training
        write_basic_config(mixed_precision="bf16")
        
        # Define the training prompt
        instance_phrase = f"{config.instance_name} the {config.class_name}"
        prompt = f"{config.prefix} {instance_phrase} {config.postfix}".strip()
        
        print(f"🎯 Training prompt: {prompt}")
        print(f"πŸš€ Starting training for {max_train_steps} steps...")
        
        # Execute training subprocess
        def _exec_subprocess(cmd: list[str]):
            """Executes subprocess and prints log to terminal while subprocess is running."""
            process = subprocess.Popen(
                cmd,
                stdout=subprocess.PIPE,
                stderr=subprocess.STDOUT,
            )
            with process.stdout as pipe:
                for line in iter(pipe.readline, b""):
                    line_str = line.decode()
                    print(f"{line_str}", end="")

            if exitcode := process.wait() != 0:
                raise subprocess.CalledProcessError(exitcode, "\n".join(cmd))
        
        # Run training
        _exec_subprocess([
            "accelerate",
            "launch",
            "examples/dreambooth/train_dreambooth_lora_flux.py",
            "--mixed_precision=bf16",
            f"--pretrained_model_name_or_path={model_dir}",
            f"--instance_data_dir={img_path}",
            f"--output_dir={output_dir}",
            f"--instance_prompt={prompt}",
            f"--resolution={config.resolution}",
            f"--train_batch_size={config.train_batch_size}",
            f"--gradient_accumulation_steps={config.gradient_accumulation_steps}",
            f"--learning_rate={config.learning_rate}",
            f"--lr_scheduler={config.lr_scheduler}",
            f"--lr_warmup_steps={config.lr_warmup_steps}",
            f"--max_train_steps={config.max_train_steps}",
            f"--checkpointing_steps={config.checkpointing_steps}",
            f"--seed={config.seed}",
        ])
        
        print("βœ… Training completed!")
        
        # Upload trained LoRA to HuggingFace repository
        
        print(f"πŸ“€ Uploading LoRA to repository: {output_repo}")

        # Create repository if it doesn't exist
        create_repo(
            repo_id=output_repo,
            repo_type="model",
            token=hf_token,
            exist_ok=True
        )

        # print contents of output_dir
        print(f"Contents of {output_dir}:")
        for file in output_dir.iterdir():
            print(file)

        upload_folder(
            folder_path=str(output_dir),
            repo_id=output_repo,
            repo_type="model",
            token=hf_token,
            commit_message=f"Add LoRA trained on {dataset_id}",
        )
        
        print(f"πŸŽ‰ Successfully uploaded LoRA to {output_repo}")
        
        return {
            "status": "success",
            "message": f"LoRA training completed and uploaded to {output_repo}",
            "dataset_used": dataset_id,
            "training_steps": max_train_steps,
            "training_prompt": prompt
        }


# ## API Endpoints with Job ID System

@app.function(
    image=image,
    keep_warm=1,  # Keep one container warm for faster response
)
@modal.fastapi_endpoint(method="POST")
def api_start_training(item: dict):
    """
    Start LoRA training and return a job ID.
    
    Expected JSON payload:
    {
        "dataset_id": "username/dataset-name",
        "hf_token": "hf_...",
        "output_repo": "username/output-repo",
        "instance_name": "optional_subject_name",
        "class_name": "optional_class_name", 
        "max_train_steps": 500
    }
    """
    try:
        # Extract required parameters
        dataset_id = item["dataset_id"]
        hf_token = item["hf_token"] 
        output_repo = item["output_repo"]
        
        # Extract optional parameters
        instance_name = item.get("instance_name")
        class_name = item.get("class_name")
        max_train_steps = item.get("max_train_steps", 500)
        
        # Start training (non-blocking)
        call_handle = train_lora_stateless.spawn(
            dataset_id=dataset_id,
            hf_token=hf_token,
            output_repo=output_repo,
            instance_name=instance_name,
            class_name=class_name,
            max_train_steps=max_train_steps
        )
        
        job_id = call_handle.object_id
        
        return {
            "status": "started",
            "job_id": job_id,
            "message": "Training job started successfully",
            "dataset_id": dataset_id,
            "output_repo": output_repo,
            "max_train_steps": max_train_steps
        }
        
    except KeyError as e:
        return {
            "status": "error",
            "message": f"Missing required parameter: {e}"
        }
    except Exception as e:
        return {
            "status": "error", 
            "message": f"Failed to start training: {str(e)}"
        }


@app.function(
    image=image,
    keep_warm=1,
)
@modal.fastapi_endpoint(method="GET")
def api_job_status(job_id: str):
    """
    Check the status of a training job.
    Pass job_id as a query parameter: /job_status?job_id=xyz
    """
    try:
        from modal.functions import FunctionCall
        
        # Get the function call handle
        call_handle = FunctionCall.from_id(job_id)
        
        if call_handle is None:
            return {
                "status": "error",
                "message": "Job not found"
            }
        
        # Check if the job is finished
        try:
            result = call_handle.get(timeout=0)  # Non-blocking check
            return {
                "status": "completed",
                "result": result
            }
        except TimeoutError:
            return {
                "status": "running",
                "message": "Job is still running"
            }
        except Exception as e:
            return {
                "status": "failed",
                "message": f"Job failed: {str(e)}"
            }
            
    except Exception as e:
        return {
            "status": "error",
            "message": f"Error checking job status: {str(e)}"
        }

@dataclass
class InferenceConfig:
    """Configuration for inference."""
    num_inference_steps: int = 20
    guidance_scale: float = 7.5
    width: int = 512
    height: int = 512


@app.function(
    image=image,
    gpu="A100",  # Inference requires GPU
    timeout=1800,  # 30 minutes
)
def generate_images_stateless(
    hf_token: str,
    lora_repo: str,
    prompts: list[str],
    num_inference_steps: int = 20,
    guidance_scale: float = 7.5,
    width: int = 512,
    height: int = 512,
):
    """
    Stateless function to generate images using a LoRA from HuggingFace.
    
    Args:
        hf_token: HuggingFace API token
        lora_repo: HuggingFace repository containing the LoRA (e.g., "username/my-lora")
        prompts: List of text prompts to generate images for
        num_inference_steps: Number of denoising steps
        guidance_scale: Classifier-free guidance scale
        width: Image width
        height: Image height
    
    Returns:
        Dictionary with status and list of generated images (as base64 strings)
    """
    import base64
    import io
    import tempfile
    from pathlib import Path
    
    import torch
    from diffusers import DiffusionPipeline
    from huggingface_hub import snapshot_download, login
    
    try:
        # Login to HuggingFace
        login(token=hf_token)
        
        # Create temporary directory for model
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = Path(temp_dir)
            model_dir = temp_path / "model"
            lora_dir = temp_path / "lora"
            
            print("πŸ“₯ Downloading base model...")
            # Download base model
            snapshot_download(
                "black-forest-labs/FLUX.1-dev",
                local_dir=str(model_dir),
                ignore_patterns=["*.pt", "*.bin"],  # using safetensors
                token=hf_token
            )
            
            print(f"πŸ“₯ Downloading LoRA from {lora_repo}...")
            # Download LoRA
            snapshot_download(
                lora_repo,
                local_dir=str(lora_dir),
                token=hf_token
            )
            
            print("πŸ”„ Loading pipeline...")
            # Load the diffusion pipeline
            pipe = DiffusionPipeline.from_pretrained(
                str(model_dir),
                torch_dtype=torch.bfloat16,
            ).to("cuda")
            
            # Load LoRA weights
            pipe.load_lora_weights(str(lora_dir))
            
            print(f"🎨 Generating {len(prompts)} images...")
            generated_images = []
            
            # Generate images for each prompt
            for i, prompt in enumerate(prompts):
                print(f"  Generating image {i+1}/{len(prompts)}: {prompt[:50]}...")
                
                image = pipe(
                    prompt,
                    num_inference_steps=num_inference_steps,
                    guidance_scale=guidance_scale,
                    width=width,
                    height=height,
                ).images[0]
                
                # Convert PIL Image to base64 string
                img_buffer = io.BytesIO()
                image.save(img_buffer, format='PNG')
                img_base64 = base64.b64encode(img_buffer.getvalue()).decode('utf-8')
                
                generated_images.append({
                    "prompt": prompt,
                    "image": img_base64
                })
            
            print("βœ… All images generated successfully!")
            
            return {
                "status": "success",
                "message": f"Generated {len(prompts)} images successfully",
                "lora_repo": lora_repo,
                "images": generated_images
            }
            
    except Exception as e:
        return {
            "status": "error",
            "message": f"Failed to generate images: {str(e)}"
        }


@app.function(
    image=image,
    keep_warm=1,
)
@modal.fastapi_endpoint(method="POST")
def api_generate_images(item: dict):
    """
    Generate images using a LoRA model.
    
    Expected JSON payload:
    {
        "hf_token": "hf_...",
        "lora_repo": "username/my-lora",
        "prompts": ["prompt1", "prompt2", ...],
        "num_inference_steps": 20,  // optional
        "guidance_scale": 7.5,      // optional
        "width": 512,               // optional
        "height": 512               // optional
    }
    """
    try:
        # Extract required parameters
        hf_token = item["hf_token"]
        lora_repo = item["lora_repo"] 
        prompts = item["prompts"]
        
        if not isinstance(prompts, list) or len(prompts) == 0:
            return {
                "status": "error",
                "message": "prompts must be a non-empty list"
            }
        
        # Extract optional parameters
        num_inference_steps = item.get("num_inference_steps", 20)
        guidance_scale = item.get("guidance_scale", 7.5)
        width = item.get("width", 512)
        height = item.get("height", 512)
        
        # Start generation (non-blocking)
        call_handle = generate_images_stateless.spawn(
            hf_token=hf_token,
            lora_repo=lora_repo,
            prompts=prompts,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            width=width,
            height=height
        )
        
        job_id = call_handle.object_id
        
        return {
            "status": "started",
            "job_id": job_id,
            "message": "Image generation job started successfully",
            "lora_repo": lora_repo,
            "num_prompts": len(prompts)
        }
        
    except KeyError as e:
        return {
            "status": "error",
            "message": f"Missing required parameter: {e}"
        }
    except Exception as e:
        return {
            "status": "error", 
            "message": f"Failed to start image generation: {str(e)}"
        }