File size: 19,054 Bytes
3fbcf45 75c12e8 3fbcf45 13fc164 3fbcf45 75c12e8 3fbcf45 75c12e8 3fbcf45 75c12e8 3cac2a1 75c12e8 3cac2a1 13fc164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
# ---
# deploy: true
# ---
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import modal
app = modal.App(name="dreambooth-lora-flux")
image = modal.Image.debian_slim(python_version="3.10").pip_install(
"accelerate==0.31.0",
"datasets==3.6.0",
"pillow",
"fastapi[standard]==0.115.4",
"ftfy~=6.1.0",
"gradio~=5.5.0",
"huggingface-hub==0.32.4",
"hf_transfer==0.1.8",
"numpy<2",
"peft==0.11.1",
"pydantic==2.9.2",
"sentencepiece>=0.1.91,!=0.1.92",
"smart_open~=6.4.0",
"starlette==0.41.2",
"transformers~=4.41.2",
"torch~=2.2.0",
"torchvision~=0.16",
"triton~=2.2.0",
"wandb==0.17.6",
)
GIT_SHA = "e649678bf55aeaa4b60bd1f68b1ee726278c0304" # specify the commit to fetch
image = (
image.apt_install("git")
# Perform a shallow fetch of just the target `diffusers` commit, checking out
# the commit in the container's home directory, /root. Then install `diffusers`
.run_commands(
"cd /root && git init .",
"cd /root && git remote add origin https://github.com/huggingface/diffusers",
f"cd /root && git fetch --depth=1 origin {GIT_SHA} && git checkout {GIT_SHA}",
"cd /root && pip install -e .",
)
)
# ### Configuration with `dataclass`es
# Machine learning apps often have a lot of configuration information.
# We collect up all of our configuration into dataclasses to avoid scattering special/magic values throughout code.
@dataclass
class SharedConfig:
"""Configuration information shared across project components."""
# The instance name is the "proper noun" we're teaching the model
instance_name: str = "Qwerty"
# That proper noun is usually a member of some class (person, bird),
# and sharing that information with the model helps it generalize better.
class_name: str = "Golden Retriever"
# identifier for pretrained models on Hugging Face
model_name: str = "black-forest-labs/FLUX.1-dev"
# ### Storing data created by our app with `modal.Volume`
# The tools we've used so far work well for fetching external information,
# which defines the environment our app runs in,
# but what about data that we create or modify during the app's execution?
# A persisted [`modal.Volume`](https://modal.com/docs/guide/volumes) can store and share data across Modal Apps and Functions.
# We'll use one to store both the original and fine-tuned weights we create during training
# and then load them back in for inference.
image = image.env(
{"HF_HUB_ENABLE_HF_TRANSFER": "1"} # turn on faster downloads from HF
)
def load_images_from_hf_dataset(dataset_id: str, hf_token: str) -> Path:
"""Load images from a HuggingFace dataset."""
import PIL.Image
from datasets import load_dataset
img_path = Path("/img")
img_path.mkdir(parents=True, exist_ok=True)
# Load dataset from HuggingFace
dataset = load_dataset(dataset_id, token=hf_token, split="train")
for ii, example in enumerate(dataset):
# Assume the dataset has an 'image' column
if 'image' in example:
image = example['image']
if isinstance(image, PIL.Image.Image):
image.save(img_path / f"{ii}.png")
else:
# Handle other image formats
pil_image = PIL.Image.open(image)
pil_image.save(img_path / f"{ii}.png")
else:
print(f"Warning: No 'image' field found in dataset example {ii}")
print(f"{len(dataset)} images loaded from HuggingFace dataset")
return img_path
# ## Stateless API Training Function
@dataclass
class APITrainConfig:
"""Configuration for the API training function."""
# Basic model info
model_name: str = "black-forest-labs/FLUX.1-dev"
# Training prompt components
instance_name: str = "subject"
class_name: str = "person"
prefix: str = "a photo of"
postfix: str = ""
# Training hyperparameters
resolution: int = 512
train_batch_size: int = 3
rank: int = 16 # lora rank
gradient_accumulation_steps: int = 1
learning_rate: float = 4e-4
lr_scheduler: str = "constant"
lr_warmup_steps: int = 0
max_train_steps: int = 500
checkpointing_steps: int = 1000
seed: int = 117
@app.function(
image=image,
gpu="A100-80GB", # fine-tuning is VRAM-heavy and requires a high-VRAM GPU
timeout=3600, # 60 minutes
)
def train_lora_stateless(
dataset_id: str,
hf_token: str,
output_repo: str,
instance_name: Optional[str] = None,
class_name: Optional[str] = None,
max_train_steps: int = 500,
):
"""
Stateless LoRA training function that reads from HF dataset and uploads to HF repo.
Args:
dataset_id: HuggingFace dataset ID (e.g., "username/dataset-name")
hf_token: HuggingFace API token
output_repo: HuggingFace repository to upload the trained LoRA to
instance_name: Name of the subject (optional, defaults to "subject")
class_name: Class of the subject (optional, defaults to "person")
max_train_steps: Number of training steps
"""
import subprocess
import tempfile
from pathlib import Path
import torch
from accelerate.utils import write_basic_config
from diffusers import DiffusionPipeline
from huggingface_hub import snapshot_download, upload_folder, login, create_repo
# Login to HuggingFace
login(token=hf_token)
# Create temporary directories
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = Path(temp_dir)
model_dir = temp_path / "model"
output_dir = temp_path / "output"
# Download base model
print("π₯ Downloading base model...")
snapshot_download(
"black-forest-labs/FLUX.1-dev",
local_dir=str(model_dir),
ignore_patterns=["*.pt", "*.bin"], # using safetensors
token=hf_token
)
# Load and validate model
DiffusionPipeline.from_pretrained(str(model_dir), torch_dtype=torch.bfloat16)
print("β
Base model loaded successfully")
# Load training images from HF dataset
print(f"π₯ Loading images from dataset: {dataset_id}")
img_path = load_images_from_hf_dataset(dataset_id, hf_token)
# Set up training configuration
config = APITrainConfig(
instance_name=instance_name or "subject",
class_name=class_name or "person",
max_train_steps=max_train_steps
)
# Set up hugging face accelerate library for fast training
write_basic_config(mixed_precision="bf16")
# Define the training prompt
instance_phrase = f"{config.instance_name} the {config.class_name}"
prompt = f"{config.prefix} {instance_phrase} {config.postfix}".strip()
print(f"π― Training prompt: {prompt}")
print(f"π Starting training for {max_train_steps} steps...")
# Execute training subprocess
def _exec_subprocess(cmd: list[str]):
"""Executes subprocess and prints log to terminal while subprocess is running."""
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
with process.stdout as pipe:
for line in iter(pipe.readline, b""):
line_str = line.decode()
print(f"{line_str}", end="")
if exitcode := process.wait() != 0:
raise subprocess.CalledProcessError(exitcode, "\n".join(cmd))
# Run training
_exec_subprocess([
"accelerate",
"launch",
"examples/dreambooth/train_dreambooth_lora_flux.py",
"--mixed_precision=bf16",
f"--pretrained_model_name_or_path={model_dir}",
f"--instance_data_dir={img_path}",
f"--output_dir={output_dir}",
f"--instance_prompt={prompt}",
f"--resolution={config.resolution}",
f"--train_batch_size={config.train_batch_size}",
f"--gradient_accumulation_steps={config.gradient_accumulation_steps}",
f"--learning_rate={config.learning_rate}",
f"--lr_scheduler={config.lr_scheduler}",
f"--lr_warmup_steps={config.lr_warmup_steps}",
f"--max_train_steps={config.max_train_steps}",
f"--checkpointing_steps={config.checkpointing_steps}",
f"--seed={config.seed}",
])
print("β
Training completed!")
# Upload trained LoRA to HuggingFace repository
print(f"π€ Uploading LoRA to repository: {output_repo}")
# Create repository if it doesn't exist
create_repo(
repo_id=output_repo,
repo_type="model",
token=hf_token,
exist_ok=True
)
# print contents of output_dir
print(f"Contents of {output_dir}:")
for file in output_dir.iterdir():
print(file)
upload_folder(
folder_path=str(output_dir),
repo_id=output_repo,
repo_type="model",
token=hf_token,
commit_message=f"Add LoRA trained on {dataset_id}",
)
print(f"π Successfully uploaded LoRA to {output_repo}")
return {
"status": "success",
"message": f"LoRA training completed and uploaded to {output_repo}",
"dataset_used": dataset_id,
"training_steps": max_train_steps,
"training_prompt": prompt
}
# ## API Endpoints with Job ID System
@app.function(
image=image,
keep_warm=1, # Keep one container warm for faster response
)
@modal.fastapi_endpoint(method="POST")
def api_start_training(item: dict):
"""
Start LoRA training and return a job ID.
Expected JSON payload:
{
"dataset_id": "username/dataset-name",
"hf_token": "hf_...",
"output_repo": "username/output-repo",
"instance_name": "optional_subject_name",
"class_name": "optional_class_name",
"max_train_steps": 500
}
"""
try:
# Extract required parameters
dataset_id = item["dataset_id"]
hf_token = item["hf_token"]
output_repo = item["output_repo"]
# Extract optional parameters
instance_name = item.get("instance_name")
class_name = item.get("class_name")
max_train_steps = item.get("max_train_steps", 500)
# Start training (non-blocking)
call_handle = train_lora_stateless.spawn(
dataset_id=dataset_id,
hf_token=hf_token,
output_repo=output_repo,
instance_name=instance_name,
class_name=class_name,
max_train_steps=max_train_steps
)
job_id = call_handle.object_id
return {
"status": "started",
"job_id": job_id,
"message": "Training job started successfully",
"dataset_id": dataset_id,
"output_repo": output_repo,
"max_train_steps": max_train_steps
}
except KeyError as e:
return {
"status": "error",
"message": f"Missing required parameter: {e}"
}
except Exception as e:
return {
"status": "error",
"message": f"Failed to start training: {str(e)}"
}
@app.function(
image=image,
keep_warm=1,
)
@modal.fastapi_endpoint(method="GET")
def api_job_status(job_id: str):
"""
Check the status of a training job.
Pass job_id as a query parameter: /job_status?job_id=xyz
"""
try:
from modal.functions import FunctionCall
# Get the function call handle
call_handle = FunctionCall.from_id(job_id)
if call_handle is None:
return {
"status": "error",
"message": "Job not found"
}
# Check if the job is finished
try:
result = call_handle.get(timeout=0) # Non-blocking check
return {
"status": "completed",
"result": result
}
except TimeoutError:
return {
"status": "running",
"message": "Job is still running"
}
except Exception as e:
return {
"status": "failed",
"message": f"Job failed: {str(e)}"
}
except Exception as e:
return {
"status": "error",
"message": f"Error checking job status: {str(e)}"
}
@dataclass
class InferenceConfig:
"""Configuration for inference."""
num_inference_steps: int = 20
guidance_scale: float = 7.5
width: int = 512
height: int = 512
@app.function(
image=image,
gpu="A100", # Inference requires GPU
timeout=1800, # 30 minutes
)
def generate_images_stateless(
hf_token: str,
lora_repo: str,
prompts: list[str],
num_inference_steps: int = 20,
guidance_scale: float = 7.5,
width: int = 512,
height: int = 512,
):
"""
Stateless function to generate images using a LoRA from HuggingFace.
Args:
hf_token: HuggingFace API token
lora_repo: HuggingFace repository containing the LoRA (e.g., "username/my-lora")
prompts: List of text prompts to generate images for
num_inference_steps: Number of denoising steps
guidance_scale: Classifier-free guidance scale
width: Image width
height: Image height
Returns:
Dictionary with status and list of generated images (as base64 strings)
"""
import base64
import io
import tempfile
from pathlib import Path
import torch
from diffusers import DiffusionPipeline
from huggingface_hub import snapshot_download, login
try:
# Login to HuggingFace
login(token=hf_token)
# Create temporary directory for model
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = Path(temp_dir)
model_dir = temp_path / "model"
lora_dir = temp_path / "lora"
print("π₯ Downloading base model...")
# Download base model
snapshot_download(
"black-forest-labs/FLUX.1-dev",
local_dir=str(model_dir),
ignore_patterns=["*.pt", "*.bin"], # using safetensors
token=hf_token
)
print(f"π₯ Downloading LoRA from {lora_repo}...")
# Download LoRA
snapshot_download(
lora_repo,
local_dir=str(lora_dir),
token=hf_token
)
print("π Loading pipeline...")
# Load the diffusion pipeline
pipe = DiffusionPipeline.from_pretrained(
str(model_dir),
torch_dtype=torch.bfloat16,
).to("cuda")
# Load LoRA weights
pipe.load_lora_weights(str(lora_dir))
print(f"π¨ Generating {len(prompts)} images...")
generated_images = []
# Generate images for each prompt
for i, prompt in enumerate(prompts):
print(f" Generating image {i+1}/{len(prompts)}: {prompt[:50]}...")
image = pipe(
prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=width,
height=height,
).images[0]
# Convert PIL Image to base64 string
img_buffer = io.BytesIO()
image.save(img_buffer, format='PNG')
img_base64 = base64.b64encode(img_buffer.getvalue()).decode('utf-8')
generated_images.append({
"prompt": prompt,
"image": img_base64
})
print("β
All images generated successfully!")
return {
"status": "success",
"message": f"Generated {len(prompts)} images successfully",
"lora_repo": lora_repo,
"images": generated_images
}
except Exception as e:
return {
"status": "error",
"message": f"Failed to generate images: {str(e)}"
}
@app.function(
image=image,
keep_warm=1,
)
@modal.fastapi_endpoint(method="POST")
def api_generate_images(item: dict):
"""
Generate images using a LoRA model.
Expected JSON payload:
{
"hf_token": "hf_...",
"lora_repo": "username/my-lora",
"prompts": ["prompt1", "prompt2", ...],
"num_inference_steps": 20, // optional
"guidance_scale": 7.5, // optional
"width": 512, // optional
"height": 512 // optional
}
"""
try:
# Extract required parameters
hf_token = item["hf_token"]
lora_repo = item["lora_repo"]
prompts = item["prompts"]
if not isinstance(prompts, list) or len(prompts) == 0:
return {
"status": "error",
"message": "prompts must be a non-empty list"
}
# Extract optional parameters
num_inference_steps = item.get("num_inference_steps", 20)
guidance_scale = item.get("guidance_scale", 7.5)
width = item.get("width", 512)
height = item.get("height", 512)
# Start generation (non-blocking)
call_handle = generate_images_stateless.spawn(
hf_token=hf_token,
lora_repo=lora_repo,
prompts=prompts,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=width,
height=height
)
job_id = call_handle.object_id
return {
"status": "started",
"job_id": job_id,
"message": "Image generation job started successfully",
"lora_repo": lora_repo,
"num_prompts": len(prompts)
}
except KeyError as e:
return {
"status": "error",
"message": f"Missing required parameter: {e}"
}
except Exception as e:
return {
"status": "error",
"message": f"Failed to start image generation: {str(e)}"
} |