Spaces:
Runtime error
Runtime error
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import numpy as np | |
import os | |
import torch | |
import gc | |
import psutil | |
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor, pipeline | |
from utils.evaluation import AudioEvaluationRequest | |
from utils.emissions import tracker, clean_emissions_data, get_space_info | |
from dotenv import load_dotenv | |
import logging | |
import csv | |
import torch.nn.utils.prune as prune | |
from typing import Optional | |
from pydantic import BaseModel, Field | |
from smolagents import Tool | |
# Configurer le logging | |
logging.basicConfig(level=logging.INFO) | |
logging.info("Début du fichier python") | |
load_dotenv() | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/audio" | |
device = 0 if torch.cuda.is_available() else -1 | |
def preprocess_function(example, feature_extractor): | |
return feature_extractor( | |
[x["array"] for x in example["audio"]], | |
sampling_rate=feature_extractor.sampling_rate, padding="longest", max_length=16000, truncation=True, return_tensors="pt" | |
) | |
def apply_pruning(model, amount=0.3): | |
for name, module in model.named_modules(): | |
if isinstance(module, torch.nn.Linear): | |
prune.l1_unstructured(module, name="weight", amount=amount) | |
prune.remove(module, "weight") | |
return model | |
class BaseEvaluationRequest(BaseModel): | |
test_size: float = Field(0.2, ge=0.0, le=1.0, description="Size of the test split (between 0 and 1)") | |
test_seed: int = Field(42, ge=0, description="Random seed for reproducibility") | |
class AudioEvaluationRequest(BaseEvaluationRequest): | |
dataset_name: str = Field("rfcx/frugalai", | |
description="The name of the dataset on HuggingFace Hub") | |
class evaluate_consumption_example(Tool): | |
name = "evaluate_consumption_example" | |
description = "This is only an example. If a manager wants to know what you are capable of, use it : it will use code carbon to evaluate the CO2 emissions from an example Python code" | |
inputs = { | |
"code": { | |
"type": "string", | |
"description": "The code to evaluate. Here, it is an example, so just set it to 'None'." | |
} | |
} | |
output_type = "string" | |
def forward(self, code : str): | |
request = AudioEvaluationRequest() | |
logging.info("Chargement des données") | |
dataset = load_dataset(request.dataset_name, streaming=True, token=os.getenv("HF_TOKEN")) | |
logging.info("Données chargées") | |
test_dataset = dataset["test"] | |
del dataset | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") | |
test_dataset = test_dataset.map(preprocess_function, fn_kwargs={"feature_extractor": feature_extractor}, remove_columns="audio", batched=True, batch_size=32) | |
gc.collect() | |
model_name = "CindyDelage/Challenge_HuggingFace_DFG_FrugalAI" | |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name) | |
# Appliquer la quantification dynamique et le pruning | |
model.eval() | |
#model = torch.quantization.quantize_dynamic(model, dtype=torch.qint8) | |
#model = apply_pruning(model, amount=0.3) # Prune 30% des poids linéaires | |
classifier = pipeline("audio-classification", model=model, feature_extractor=feature_extractor, device=device) | |
predictions = [] | |
logging.info("Début des prédictions par batch") | |
i=0 | |
for data in iter(test_dataset): | |
print(i) | |
if (i<=5): | |
with torch.no_grad(): | |
result = classifier(np.asarray(data["input_values"]), batch_size=64) | |
predicted_label = result[0]['label'] | |
label = 1 if predicted_label == 'environment' else 0 | |
predictions.append(label) | |
# Nettoyer la mémoire après chaque itération | |
del result | |
del label | |
torch.cuda.empty_cache() | |
gc.collect() | |
i=i+1 | |
if(i>5): | |
break | |
logging.info("Fin des prédictions") | |
del classifier | |
del feature_extractor | |
gc.collect() | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
return emissions_data | |
class evaluate_consumption(Tool): | |
name = "evaluate_consumption" | |
description = "If the manager gave you its Python code, this function uses code carbon to evaluate the CO2 emissions from the given Python code" | |
inputs = { | |
"code": { | |
"type": "string", | |
"description": "The code to evaluate." | |
} | |
} | |
output_type = "string" | |
def forward(self, code : str): | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
exec(code) | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
return emissions_data |